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Learning consistent subcellular landmarks 
to quantify changes in multiplexed  
protein maps

Hannah Spitzer    1,7, Scott Berry    2,3,7, Mark Donoghoe    4, Lucas Pelkmans2  & 
Fabian J. Theis    1,5,6 

Highly multiplexed imaging holds enormous promise for understanding 
how spatial context shapes the activity of the genome and its products 
at multiple length scales. Here, we introduce a deep learning framework 
called CAMPA (Conditional Autoencoder for Multiplexed Pixel Analysis), 
which uses a conditional variational autoencoder to learn representations 
of molecular pixel profiles that are consistent across heterogeneous cell 
populations and experimental perturbations. Clustering these pixel-level 
representations identifies consistent subcellular landmarks, which 
can be quantitatively compared in terms of their size, shape, molecular 
composition and relative spatial organization. Using high-resolution m ul-
ti pl exed i mm un of u or es cence, this reveals how subcellular organization 
changes upon perturbation of RNA synthesis, RNA processing or cell size, 
and uncovers links between the molecular composition of membraneless 
organelles and cell-to-cell variability in bulk RNA synthesis rates. By 
capturing interpretable cellular phenotypes, we anticipate that CAMPA  
will greatly accelerate the systematic mapping of multiscale atlases of 
biological organization to identify the rules by which context shapes 
physiology and disease.

The wide availability of single-cell omics techniques has rapidly 
advanced our understanding of cell biology in health and disease1,2. 
Currently, there is a rapidly growing range of spatially resolved omics 
methods, which can quantify tens to hundreds of molecular species 
in single cells across large populations of cells or tissues, and at the 
same time show how these molecular species are spatially organized 
from the multicellular to the subcellular scale3–5. This combination 
of quantitative and spatial information across multiple scales holds 
enormous promise for understanding biological systems.

Cells in different states (for example, distinct cell cycle positions 
or disease states) or experimental conditions show changes in the 
relative abundance and subcellular localization of proteins and RNAs. 
From an analysis perspective, the challenge is to identify and quantify 
these changes directly from multiplexed image-based datasets in an 
unbiased manner, and thereby facilitate their biological interpretation. 
Previously, pixel clustering of multiplexed image data has been used to 
identify subcellular regions via similarity of their molecular profiles3,4. 
These approaches weigh all channels equally in clustering, therefore, 
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by CAMPA (cellular intensities, subcellular protein localizations and 
subcellular spatial organization) contribute unique information to 
characterize perturbations, indicating that CAMPA will be a power-
ful approach for cellular phenotypic screening. Finally, by capturing 
and quantifying interpretable cellular phenotypes at multiple scales, 
we demonstrate that the combination of 4i and CAMPA can uncover 
quantitative relationships across scales, from cell populations to sub-
cellular organelles.

Results
CAMPA identifies consistent subcellular landmarks
In highly multiplexed image datasets, each pixel is represented as a 
multiplexed pixel profile: a one-dimensional vector containing the 
intensity of each marker at that spatial location. We developed CAMPA 
to identify consistent types of pixel profiles across different experi-
mental conditions, even when some of the underlying channels change. 
CAMPA first learns a local, condition-independent representation of 
multiplexed pixel profiles and subsequently clusters the learned rep-
resentations into CSLs (Fig. 1c). To learn a latent representation z, a 
cVAE is trained on an n × n neighborhood of the multiplexed pixel pro-
files x, together with a set of condition labels c for each pixel profile. 
Pixels are then grouped together by applying the Leiden algorithm13 
on a k-nearest neighbor graph of the learned latent (pixel) representa-
tions. Because the cVAE model learns a conditional generative distribu-
tion pθ(x|z, c) for the pixel profiles, the model is optimized to encode 
variation such as subcellular differences in intensity that occur across 
all conditions (and omit condition-specific information) in the latent 
representation z10,14, which results in less condition-dependent cluster-
ing of z (Fig. 1h,i). Within CAMPA, identified CSLs can be quantitatively 
compared in terms of their size, shape, molecular composition and 
relative spatial organization.

A key goal of perturbation experiments is to identify and quantify 
induced changes in cellular phenotypes. Here, we focus on how pertur-
bation of various stages of RNA metabolism affects subcellular organi-
zation, by collecting a high-resolution (pixel size, 108 nm × 108 nm) 
44-plex image dataset of 11,848 human epithelial cells (184A1) across 
six chemical perturbations, using 4i (ref. 4) (Fig. 1d). The perturbations 
target different pathways involved in RNA production and processing 
(histone deacetylation, trichostatin A (TSA); polymerase (Pol) I tran-
scription, CX5461 (ref. 15); Pol II transcription initiation, triptolide16; 
Pol II transcription activation, AZD4573 (ref. 17); and mRNA splicing, 
meayamycin18). The proteins and post-translational modifications 
imaged (Supplementary Table 1) either play roles in RNA metabolism or 
are molecular markers of subcellular organelles (for example, nuclear 
speckles) or cellular states (for example, cell cycle stage, cell crowd-
ing). We observed changes in overall protein state abundances across 
all perturbations (Fig. 1e), confirming previous observations in other 
cell lines19. However, we also noticed perturbation-induced changes 
in the composition and relative spatial organization of membraneless 

when applied across cells from different experimental conditions they 
typically result in pixels from different conditions being identified as 
distinct4, even though they may represent the same subcellular region. 
As an extreme example, if an experimental treatment eliminates a single 
target protein (Fig. 1a), the reduction in intensity of the corresponding 
channel may be the largest difference between the high-dimensional 
pixel profiles of the two conditions. In this case, direct pixel clustering 
would identify independent sets of pixel clusters for each condition 
(Fig. 1b). Although this may be useful for qualitative identification of 
differences between conditions4, it does not enable quantification of 
changes in the internal organization of cells because it is difficult to 
compare the different sets of subcellular regions found in each condi-
tion (Supplementary Note 1).

Recently, deep learning-based segmentation models were used to 
segment cells and nuclei from multi-channel fluorescence microscopy 
images6,7. However, adapting these supervised methods to generate 
consistent segmentations of subcellular structures would require 
annotated training data from all conditions. Although self-supervised 
approaches alleviate the need for this time-consuming manual labe-
ling8,9, they do not account for changing localizations of molecular 
species across perturbations nor do they enable quantification of 
these changes. To facilitate high-throughput quantitative analysis of 
subcellular organization, we therefore need approaches that can iden-
tify consistent subcellular landmarks despite condition-dependent, 
and possibly unanticipated, changes to abundance and/or relative 
localization of measured proteins and RNAs.

To achieve this, we have developed CAMPA (Conditional Autoen-
coder for Multiplexed Pixel Analysis), a deep learning framework based 
on conditional variational autoencoders (cVAEs)10. CAMPA uses a cVAE 
for unsupervised learning of condition-independent molecular profile 
representations to identify consistent subcellular landmarks (CSLs), 
that is, pixel clusters that are conserved across conditions. Using these 
landmarks to measure changes in molecular composition and spatial 
organization at the subcellular scale, CAMPA enables an interpretable 
comparison of conditions (Fig. 1c). CAMPA is an open-source python 
package with strong links to the single-cell transcriptomics analy-
sis software, scanpy11, and its spatial extension, squidpy12. It enables 
high-throughput analysis of high-resolution multiplexed imaging 
datasets with GPU (graphics processing unit)-accelerated assignment 
of pixels to CSLs.

Here, we use CAMPA to derive a detailed map of subnuclear organi-
zation across different perturbations, directly from high-resolution 
iterative indirect immunofluorescence imaging (4i) (ref. 4) data. This 
shows how key proteins and protein states (for example, phospho-
proteins and histone post-translational modifications) involved in 
transcription, chromatin, mRNA processing and nuclear export, as well 
as subnuclear organelles, change at the cellular and subcellular scale 
upon perturbation of various stages of messenger RNA metabolism. We 
find that the three aspects of cellular phenotypic information captured 

Fig. 1 | CAMPA enables unsupervised learning of CSLs using a cVAE.  
a, Schematic showing perturbation-induced changes in channel intensity.  
b, Schematic of direct pixel clustering across experimental conditions leading 
to condition-dependent clusters. c, Schematic of CAMPA, showing how a cVAE 
conditioned on perturbation can learn a perturbation-independent latent space. 
Clustering this latent space identifies CSLs, enabling quantitative comparisons. 
 d, Schematic of the 4i experiment and dataset dimensions. e, Fold-change in 
nuclear mean intensity in different perturbations compared with unperturbed 
cells, for all proteins with nuclear localization. P values show the significance of 
the perturbation effect on mean intensity, as determined using a mixed-effect 
model (Wald test, multiple testing correction using Benjamini–Yekutieli method). 
5-EU represents 5-ethynyl uridine pulse labeling of nascent RNA (Methods).  
f, UMAP representation of pixels using either multiplexed pixel profiles (left)  
or cVAE latent space (right). Pixels from unperturbed cells, trichostatin A (TSA)-
treated and triptolide-treated cells colored by perturbation. Data shown are the 

subset of pixel profiles used to derive the clustering (see Methods). g, Comparison 
of perturbation dependence of multiplexed pixel profiles, and VAE/cVAE latent 
space coordinates. Plots show balanced accuracy scores of binary logistic 
regression classifiers predicting perturbation from normalized multiplexed 
pixel profiles or latent representations. Accuracy of 0.5 indicates random 
chance (perturbation information absent from data). h, Example cells from each 
perturbation colored by clusters, along with a pie chart of relative abundance 
of clusters per perturbation. Left: Direct pixel intensity clustering (Leiden 
resolution, 1.2). Right: cVAE latent space clustering (CSLs) (Leiden resolution, 
0.5). i, Comparison of perturbation dependence of direct clustering at different 
Leiden resolutions, and VAE and cVAE latent space clustering (CSLs). Plots show 
the coefficient of variation of the fraction of pixels assigned to each cluster in each 
perturbation. The boxplot summarizes results for all clusters with the number of 
clusters n shown above. Center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5-fold the interquartile range; points, all data points.
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nuclear organelles involved in RNA metabolism, such as nuclear speck-
les, promyelocytic leukemia (PML) bodies and the nucleolus. This 
dataset therefore provides an ideal use-case for the CAMPA framework 
to generate novel insights into relationships between RNA metabolism 
and subcellular organization.

To quantify these changes, we initially focused on analyzing the 
approximately 100 million nuclear pixels for the 34 markers that local-
ized to the nucleus (Extended Data Fig. 1 and Supplementary Tables 2, 
3). We applied CAMPA cVAE training and clustering to these data using 

cell cycle stage (labeled independently of CAMPA19,20) and perturbation 
condition as categorical condition labels. As expected, we found that 
multiplexed pixel profiles were highly perturbation dependent when 
plotted using UMAP (uniform manifold approximation and projection) 
embedding21, while the cVAE latent representations appeared to have 
overlapping distributions (Fig. 1f). To verify the condition independ-
ence of the latent representation, we used binary linear classifiers 
trained to distinguish pixels from perturbed and unperturbed cells 
based on their latent representations. These classifiers were often 
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not better than random chance (median accuracy, 0.53; minimum, 
0.50; maximum, 0.60). In contrast, classifiers based on multiplexed 
pixel profiles reached a median accuracy of 0.87 (minimum, 0.52; 
maximum, 0.98). The VAE model without conditioning was not able 
to generate condition-independent latent spaces (median accuracy, 
0.72; minimum, 0.51; maximum, 0.97), indicating that explicit use of 
conditioning is necessary in CAMPA (Fig. 1g and Extended Data Fig. 2a). 
To investigate the importance that the cVAE places on the condition, 
we used integrated gradients22, which showed that for channels with 
perturbation-specific intensity changes, the cVAE places increased 
importance on the condition input (as opposed to the latent represen-
tation) for modeling these channels (Extended Data Fig. 4d,e). We also 
optimized the input neighborhood size to improve cVAE latent space 
robustness to single-pixel noise, which often occurs in microscopy 
imaging. For our data, a 3 × 3 neighborhood was optimal (Supplemen-
tary Fig. 1d).

To accelerate latent space clustering and to enable interactive 
clustering on a standard workstation, we clustered a subsample of 
pixels (150,000 pixels) and then projected resulting clusters to all 
pixels using the 15 nearest neighbors. This resulted in 10 clusters. 
Cluster stability was not significantly influenced by a different random 
subsample nor by increasing or decreasing the number of samples used 
for the clustering by a factor of two (Supplementary Fig. 1a,b). Because 
all conditions are considered together, any cluster instability does not 
affect the ability to quantitatively compare cells across conditions. For 
comparison with previous approaches, we also directly clustered pixels 
using their multiplexed pixel profiles4. Whereas intensity space clusters 
were enriched in different perturbations (Fig. 1h and Extended Data 
Fig. 2b), latent space clusters were evenly distributed across perturba-
tions (Fig. 1h and Extended Data Fig. 2c). To quantify the perturbation 
specificity of clusters, we computed the median coefficient of varia-
tion of the fraction of pixels assigned to each cluster across perturba-
tions. The median coefficient of variation of the latent space clustering 
is 0.24 (minimum, 0.08; maximum, 0.61), indicating that clusters 
have a similar relative abundance in different perturbations, whereas 
direct pixel clustering at similar resolution results in a median coef-
ficient of variation of 0.57 (minimum, 0.09; maximum, 2.62) (Fig. 1i).  
In addition, despite differences in intensities of some 4i markers 
across different cell cycle phases (for example, PCNA (proliferating 
cell nuclear antigen), pRB1), the inclusion of cell cycle as a condition 
in CAMPA reduced the cell cycle dependence of the latent representa-
tions (median accuracy of pairwise binary classifiers of latent space/
pixel profiles, 0.58/0.67), which resulted in latent space clusters being 
assigned consistently across cell cycle stages (median coefficient of 
variation across cell cycle stages of latent space clustering/direct pixel 
clustering, 0.11/0.21) (Extended Data Fig. 3). We therefore name these 
cVAE latent space clusters ‘consistent subcellular landmarks’ (CSLs) 
and use them in the following to analyze the impact of perturbations 
on subcellular organization.

To enable biological interpretability of quantitative comparisons 
between cells, we annotated CSLs with the names of known subcellular 
structures (see Methods) (Fig. 2a). To facilitate this optional step in the 
CAMPA workflow and to avoid mis-annotations, automated annotation 
proposals can be obtained by querying the Human Protein Atlas (https://
www.proteinatlas.org/)23 database. The annotation resulted in assign-
ment of the 10 original CSLs to seven annotated CSLs (Nucleolus, Nuclear 
speckles, PML bodies, Cajal bodies, Nucleoplasm, Nuclear periphery 
and Extra-nuclear (outside the nucleus)) (Fig. 2d–i), by merging four 
original CSLs into the Nucleoplasm CSL (Extended Data Fig. 4a). These 
annotations are consistent with automatic annotations proposed by the 
Human Protein Atlas database (Extended Data Fig. 4b). In the following 
we refer to these annotated CSLs simply as CSLs. To quantitatively vali-
date CSL annotations, we performed two manual segmentations of 
nuclear speckles and two manual segmentations of PML bodies using 
state-of-the-art pixel classifiers24 (Extended Data Fig. 5). These were 

based only on single-channel intensities of canonical markers for these 
membraneless organelles (SON and SRRM2 for nuclear speckles and 
SP100 and PML for PML bodies). We quantitatively compared these 
manual segmentations with their respective CSLs using the F1-score (a 
measure of similarity) and found that CSL-derived nuclear speckles were 
as similar to the manual segmentations (F1(CSL|SON) = 0.963 ± 0.006 , 
F1(CSL|SRRM2) = 0.967 ± 0.006, mean ± s.d. between conditions) as the 
d i ffe re n t  m a n u a l  se g m e n t a t i o n s  a re  to  o n e  a n o t h e r 
(F1(SRRM2|SON) = 0.964 ± 0.007) (Extended Data Fig. 5). F1-scores were 
similarly high for PML bodies.

We therefore conclude that CAMPA enables consistent identi-
fication and annotation of subcellular landmarks across perturba-
tions and cell cycle stages. This contrasts with previous direct pixel 
clustering approaches, which often identify different clusters for 
the same subcellular organelle in different conditions or cell cycle 
stages. Unlike for manual segmentation of subcellular structures, 
when using CAMPA to identify CSLs there is no need to pre-define 
markers of certain landmarks in advance, because the cVAE uses all 
channels that are consistent across perturbations to define the latent 
space. This may ultimately enable identification of novel landmarks 
defined by higher-dimensional combinations of different channels. 
Importantly, the cVAE learns to remove condition-specific information 
from channels that show characteristic changes in intensity between 
conditions when generating the latent space and the CSLs. Naturally, as 
shown in the following, these channels can then be used to compare the 
effects of, and differences between, perturbations when aggregated on  
the CSLs.

Uncovering perturbation-induced subcellular landmark 
changes
To quantify subcellular changes in abundance of markers across the 
six perturbations, we calculated the mean intensity of each marker in 
each CSL per cell. We then computed the fold-change for a particular 
condition compared with unperturbed cells, across all CSL–channel 
combinations, as well as the fold-changes in the size (number of pixels)  
of each CSL (Supplementary Fig. 2a,b). Unlike direct pixel clustering 
approaches3,4, in which conditions are compared by identifying pixel 
classes that change abundance between conditions (Extended Data 
Fig. 6 and Supplementary Note 1), CAMPA compares molecular abun-
dances across landmarks that are consistently found in both conditions 
(CSLs). This naturally extends traditional quantification of overall cel-
lular abundance changes (Fig. 1d) to the subcellular scale. Focusing 
on meayamycin, which perturbs mRNA splicing18, CAMPA identified 
a set of markers that were uniformly depleted across the nucleus, and 
an overall increase in the size of nuclear speckles (Supplementary 
Fig. 2b). To investigate relocalization of proteins (rather than over-
all changes in abundance), we normalized intensity fold-changes in 
each CSL by their corresponding whole-nucleus fold-changes (Fig. 3a  
and Supplementary Fig. 2c). This showed that the relative size of 
nuclear speckles increases upon meayamycin treatment, and that 
their molecular composition changes: they become significantly 
enriched in cytoplasmic poly(A) binding protein 1 (PABPC1) (Fig. 3d) 
and depleted in POLR2A-S2P (a marker of actively transcribing RNA 
polymerase II) (Fig. 3e). PABPC1 relocalization to nuclear speckles was 
observed previously25. POLR2A-S2P is typically distributed throughout 
the nucleoplasm with slight enrichment in nuclear speckles (Fig. 2c)26. 
However, upon inhibition of mRNA splicing, POLR2A-S2P is reduced in 
overall abundance (Supplementary Fig. 2b) and is specifically excluded 
from nuclear speckles (Fig. 3a,e). These changes in POLR2A-S2P were 
mirrored by a reduction in bulk RNA production upon meayamycin 
treatment, as measured using 5-ethynyl uridine pulse labeling (Fig. 1d  
and Methods). Many mRNA splicing factors are located in nuclear 
speckles, and transcription and splicing has been reported to occur 
more efficiently in their vicinity27–29. Moreover, Ser2-phosphorylation of 
POLR2A is important for coupling of mRNA splicing and transcriptional 
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elongation30. However, our analysis shows that the relative abundance 
of CDK9 (the kinase predominantly responsible for POLR2A-S2P) 
increases in nuclear speckles at the same time (Fig. 3a). This indicates 
that inhibition of splicing affects overall transcription rates, and either 
causes relocalization of transcribing Pol II (POLR2A-S2P) further away 
from nuclear speckles or preferentially affects transcription of genes 
that are normally transcribed in the vicinity of nuclear speckles. These 
findings are in agreement with a model in which splicing and transcrip-
tion are functionally and kinetically coupled31.

To analyze changes in spatial arrangement of the identified CSLs 
upon meayamycin treatment, we computed the pairwise spatial 
co-occurrence between all CSLs (Fig. 3f). Spatial co-occurrence12,32 
captures the relative probability that two CSLs are found within a given 
distance interval from one another (Fig. 3g and Supplementary Fig. 3).  
At short distances, co-occurrence scores from a structure to itself 
(auto-co-occurrence) are typically high, reflecting the fact that pixels in 
close spatial proximity are likely to be from the same CSL. We found that 
spatial auto-co-occurrence of nuclear speckles remains high at larger 
distances in meayamycin-treated cells than in unperturbed cells. This 
indicates that the average size of nuclear speckles increases in this per-
turbation, which we confirmed (Fig. 3h). Examining the co-occurrence 
between CSLs, we found that co-occurrence of PML bodies and nuclear 
speckles increases at short distances in meayamycin-treated cells 
compared with unperturbed cells (Fig. 3g), indicating that PML bod-
ies are more likely to be found in close proximity to nuclear speckles. 
The opposite effect was observed between nuclear speckles and the 
nucleolus (Fig. 3g). Re-examination of images of CAMPA-derived sub-
cellular segmentations showed that, upon meayamycin treatment, 
PML bodies indeed appear to coalesce onto nuclear speckles, and 
the nucleolus and nuclear speckles appear to move further from one 
another (Fig. 3b). To our knowledge, neither of these observations has 
been previously reported. PML bodies have been reported to juxta-
pose with Cajal bodies33 and some PML isoforms (produced through 
alternative splicing) localize to the nucleolar periphery34. Notably, 

all of these compartments, including nuclear speckles, are thought 
to form through liquid–liquid phase separation35, therefore relocali-
zation of PML bodies to contact nuclear speckles could represent 
surface-wetting between these distinct condensates36.

CSLs can thus be used to identify and statistically quantify both 
absolute and relative changes in molecular abundance in different 
cellular structures and to quantify changes in the size, morphological 
properties and the high-dimensional subcellular spatial organization 
of thousands of cells.

Comparing multiple perturbations
So far, we have considered comparisons of each perturbation to unper-
turbed controls. Here, we extend these analyses and show how CAMPA 
can be used to compare multiple perturbations with one another. To 
do this, we generated a feature vector for each cell containing the 
mean intensity of each channel in each CSL (Fig. 4b). We used this as 
a representation of the specific subcellular-localized abundance of 
each channel. In a similar way, we represented the spatial organiza-
tion of the nucleus as a feature vector containing the pairwise spatial 
co-occurrence scores (Fig. 4c). Finally, we used a baseline feature vector 
of mean nuclear intensities of all channels to represent the information 
available without subcellular resolution (Fig. 4a). To determine how 
these distinct aspects of cellular organization change across all pertur-
bations, we quantified differences between perturbations with all three 
per-cell representations using pairwise silhouette scores (Fig. 4d–f). 
Using mean nuclear intensity features, perturbations targeting Pol II 
transcription (AZD4573, triptolide) showed low pairwise silhouette 
scores, indicating common changes in overall nuclear abundance of 
the proteins and protein states measured (Fig. 4d). In almost all of the 
cases, pairwise silhouette scores were higher when considering per-CSL 
intensities (Fig. 4e) instead of whole-nucleus intensities. This indicates 
that per-CSL intensities provide a more fine-grained characteriza-
tion of the cellular phenotype and are therefore better able to distin-
guish perturbations. In contrast, we found that spatial co-occurrence 

a b c

UMAP1

U
M

AP
2

PML bodies

Nuclear speckles

Nucleoplasm

Nucleolus

Cajal bodies

d e f

g h i

PML bodies
Nuclear speckles

Nucleoplasm
Nuclear periphery

Nucleolus

Cajal bodies

Extra-nuclear

C
hannel intensity (a.u.)

0

1

Nuclear periphery

PM
L

SE
TD

IA

N
O

N
O

PA
BP

C
1

PA
BP

N
1

N
C

L

C
O

IL

H
3K

4m
e3

RP
S6

G
TF

2B

C
D

K9
pC

D
K9

C
C

N
T1

U
2S

N
RN

PB

SO
N

SP
10

0

H
2B

KP
N

A2H
3

PC
N

A

SR
RM

2

D
AP

I

H
D

AC
3

YA
P1 Sm

SR
SF

2

pR
B1

C
D

K7

SRRM2 H3 H3K4me3

Nuclear periphery
Extra-nuclear
Nucleolus
Nucleoplasm

Nuclear speckles
PML bodies
Cajal bodies

–4
–2
0
2
4

Mean
intensity
(z-score)

H3K27ac COIL Sm

ALYREFNCL

PML KPNA1

POLR2A-S5P

NONO

PO
LR

2A
–S

5P

PO
LR

2A
–S

2P
H

3K
27

ac

KP
N

A1

AL
YR

EF

PO
LR

2A

Fig. 2 | CSLs represent known subnuclear structures. a, UMAP representation 
of pixels using their cVAE latent representations generated in CAMPA, colored 
by CSL. b, Example nucleus showing the spatial distribution of CSLs. c, Relative 
mean intensity of each channel in each annotated CSL (see Extended Data 
Fig. 4a for all 10 Leiden clusters). Heatmap z-scored by column to show the 

relative localization of each channel across CSLs. The black-outlined boxes are 
highlighted in d–i. d–i, Example 4i channels that are enriched or depleted in the 
identified CSLs, shown together with CSLs. See c for the distribution of channels 
across the CSLs. Scale bar, 5 µm.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | July 2023 | 1058–1069 1063

Article https://doi.org/10.1038/s41592-023-01894-z

scores alone were generally less able to distinguish perturbations than 
mean nuclear intensities (lower silhouette scores). For example, cells 
treated with the histone deacetylase inhibitor trichostatin A, were 
distinct from unperturbed cells when using whole-nucleus intensi-
ties but highly similar when using co-occurrence scores (Fig. 4d,f). 
This indicates a limited change in spatial organization of the nucleus 
upon histone deacetylase inhibition (for the 4i markers quantified in 
our experiment), despite hyperacetylation of histones (Fig. 1d). One 
notable exception was the RNA Pol I inhibitor in CX5461-treated and 

unperturbed cells. Here, spatial information was significantly more 
informative than molecular abundance information when distinguish-
ing perturbations both at the whole-nucleus and CSL levels (Fig. 4d,f). 
To pinpoint how their spatial organization differs, we compared all 
CSL spatial co-occurrences between CX5461-treated cells and unper-
turbed controls. This showed that the major difference was in the rela-
tive spatial distribution of the nucleolus CSL, compared with itself 
and with other CSLs (Fig. 4g and Extended Data Fig. 7). In particular,  
the nucleolus had higher spatial auto-co-occurrence at short distances 

0

2

4

M
ed

ia
n 

nu
cl

ea
r

sp
ec

kl
e 

ar
ea

 (µ
m

2 )
0

10

20

M
ed

ia
n 

nu
cl

ea
r

sp
ec

kl
e 

co
un

t
Unperturbed
Meayamycin (12.5 h)

Nuclear speckles PML bodies Nucleolus

1 10 1 10 1 10

−3

0

3

−1.0

−0.5

0

0.5

1.0

−3

−2

−1

0

1

2

3

Distance [da, db] (µm)

lo
g 2 s

pa
tia

l c
o-

oc
cu

rr
en

ce
(fr

om
 N

uc
le

ar
 s

pe
ck

le
s)

Meayamycin Unperturbed

0

0.5

1.0
Intensity

a

SRRM2 PABPC1 POLR2A-S2P

Unperturbed

Meayamycin

g

Meayamycin

h

Cajal bodies
Extra−nuclear
Nuclear periphery
Nuclear speckles
Nucleolus
Nucleoplasm
PML bodies

CSLb c d e

CSL

f

da
db

Spatial co-occurrence: 
Relative probability of 

p[da,db] (i)

p[da,db] (i|j)
C[da,db]

ij
CSL i at distance 
[da,db] from CSL j

Fr
ac

tio
n 

of
pi

xe
ls

SE
TD

1A

N
O

N
O

PA
BP

N
1

PA
BP

C
1

N
C

L

C
O

IL

H
3K

4m
e3

RP
S6

G
TF

2B
C

D
K7

C
C

N
T1

U
2S

N
RN

PB

SO
N

SP
10

0
PM

L

H
3

KP
N

A2H
2B

PC
N

A

SR
RM

2

D
AP

I

H
D

AC
3

YA
P1Sm

SR
SF

2

pR
B1

Cajal bodies
PML bodies

Nuclear periphery
Nuclear speckles

Nucleoplasm
Nucleolus

Channel

log2(fold–change)
2

–2

0 P < 0.01
P < 0.05
P > 0.05

C
D

K9
pC

D
K9

PO
LR

2A
–S

5P

PO
LR

2A
–S

2P

H
3K

27
ac

KP
N

A1

AL
YR

EF

PO
LR

2A

=

j

Fig. 3 | Molecular composition and spatial organization of subcellular 
landmarks change upon inhibition of mRNA splicing. a, log2 fold-change of 
mean intensities for each channel in each CSL, or number of pixels in each CSL, 
when comparing meayamycin with unperturbed cells. Values shown are normalized 
to overall (whole-nucleus) changes in intensity. P values show the significance 
of meayamycin treatment on intensity of each channel and CSL combination, 
compared with the change observed for the whole nucleus, as determined 
from the mixed-effect model (Wald test, multiple testing correction using the 
Benjamini–Yekutieli method). b, Example unperturbed (top) and meayamycin-
treated (bottom) cells, colored by CSL. c–e, Example cell from b with pixels 
colored by SRRM2 intensity (c), PABPC1 intensity (d) and POLR2A-S2P intensity 

(e). f, Schematic showing calculation of spatial co-occurrence. g, Mean log2 spatial 
co-occurrence from Nuclear speckles to Nuclear speckles (auto-co-occurrence), 
Nucleolus and PML bodies, as a function of distance (minimum of the distance 
interval; on log scale) in meayamycin-treated and unperturbed cells. Shaded 
regions indicate 95% confidence intervals for the mean. See Supplementary  
Fig. 3b for all co-occurrence plots of meayamycin-treated and unperturbed cells. 
h, Median area of individual nuclear speckles, and number of nuclear speckles per 
cell. Boxplots summarize distributions over meayamycin-treated and unperturbed 
cells. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5-fold 
the interquartile range; outliers omitted for clarity. Unperturbed, n = 3,680; 
meayamycin, n = 755 (see Supplementary Table 3 for details).
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and lower spatial auto-co-occurrence at longer distances, indicat-
ing that the nucleolus adopts a more compact and spatially coher-
ent conformation in CX5461-treated cells (Fig. 4h). Moreover, pixels 
assigned to the nucleolus were more likely to be found close to the 
nuclear periphery. On examination of example images we found that 
CX5461 treatment results in a circularization and shrinking (Fig. 4i,j) 
of the nucleolus and fragmentation into smaller regions enriched in  
the nucleolar marker NCL. Given that CX5461 inhibits synthesis of ribo-
somal RNA, changes in the morphology of the nucleolus (the site of 
rRNA transcription) in CX5461-treated cells are not unexpected. None-
theless, it shows that CAMPA can rapidly identify that the nucleolus 

is the primary site of activity of this compound, despite the antibody 
panel not having a marker for the directly targeted protein (RNA poly-
merase I). This points to the exciting future possibility of applying 
CAMPA in a chemical compound screening format to provide clues to 
subcellular locations that are relevant for the activity of a particular 
molecule. Overall, this analysis shows that cellular representations 
obtained through CAMPA can be used to compare cells from several 
perturbations at once, at the level of subcellular localization or spa-
tial organization. These are rich and readily interpretable sources of 
information, which are complementary to one another and to overall 
protein abundance measurements.
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Fig. 4 | CAMPA-derived cell features enable comparisons of spatial and 
molecular differences across multiple perturbations. a–c, UMAP embedding 
of cells using per-nucleus mean intensity (a), per-CSL mean intensity (b) and 
pairwise CSL spatial co-occurrence scores (c). Points are colored by perturbation, 
and UMAP outliers are manually excluded for clarity (Supplementary Fig. 4).  
d, Pairwise differences between perturbations measured by silhouette score using 
per-cell mean intensity values. Higher silhouette scores indicate less overlap 
between perturbations. e, Change in silhouette score when considering per-CSL 
intensities. Negative values indicate decreased silhouette scores compared with 
per-cell intensity silhouette scores; positive values indicate increased silhouette 
scores. P values obtained using the two-sided Wilcoxon signed-rank test and 
were adjusted for multiple testing using Bonferroni correction. f, As in e, for the 
change in silhouette score when considering pairwise CSL spatial co-occurrence 
scores. g, Comparison of pairwise spatial co-occurrences for different CSLs in 

CX5461-treated cells and unperturbed cells quantified as the area between spatial 
co-occurrences curves (computed using log-transformed distances). h, Mean 
log2 spatial co-occurrence from Nucleolus to Nucleolus (auto-co-occurrence) 
or Nuclear periphery, as a function of distance (on log scale) in CX5461-treated 
and unperturbed cells. Shaded regions indicate 95% confidence intervals for the 
mean. i, Total physical area of nucleolus (as a fraction of the nuclear area), number 
of nucleoli per cell and median nucleolus circularity per cell. Boxplots summarize 
distributions across CX5461-treated and unperturbed cells. Center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5-fold the interquartile range; 
outliers omitted for clarity. Before obtaining counts and circularity per cell, small 
objects were removed (Methods). Unperturbed, n = 3,680; CX5461, n = 1,152 
(see Supplementary Table 3 for details). j, Top: example CX5461-treated and 
unperturbed cells with pixels colored by CSL. Bottom: nucleolin (NCL) intensity 
from the same cells with nucleolus CSL outlines overlaid.
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Revealing subcellular reorganization upon cell size change
Having developed CAMPA on a 34-plex dataset focused on cell nuclei, 
we next applied it to whole cell images to demonstrate its potential to 
identify a larger number of cellular landmarks from higher-dimensional 
image data. Here, we examined HeLa cells in which expression of SBF2 
(SET binding factor 2) is reduced by treatment with short interfering 
RNA, which results in an approximate twofold increase of cell volume 
and an approximately threefold increase in cell area19 compared with 
control cells transfected with scrambled siRNA (Supplementary Tables 4  
and 5). We applied CAMPA on 43 channels comprising both nuclear and 
cytoplasmic 4i stains, using perturbation (SBF2 or scrambled siRNA) 
and cell cycle stage (G1, S, G2) as conditions (Supplementary Table 6). 
This resulted in 21 CSLs (Extended Data Fig. 8a), some of which were 
manually merged, including two distinct P-body CSLs that correspond 
to the center and periphery, respectively (Extended Data Fig. 8b). This 
resulted in 16 distinct cytoplasmic and nuclear annotated CSLs (Fig. 5).  
These comprise all major compartments marked by the antibodies in 
the panel, including all previously identified nuclear CSLs (for compari-
son see Extended Data Fig. 8d,e) as well as cytoplasmic landmarks such 
as perinuclear and peripheral endoplasmic reticulum and mitochondria 
(HSPD1/CALR), Golgi apparatus (GOLGA2) cell–cell contacts (CTNNB1), 
focal adhesions (PXN) and P-bodies (DDX6) (Fig. 5b,c). Our manual 
annotation is consistent with the automated annotation, but is more 
detailed (Extended Data Fig. 8c). Comparison of the per-CSL mean 
intensities of each marker between conditions showed several uniform 
differences across the whole nucleus or cytoplasm (Supplementary  
Fig. 5a,c). The more striking changes were differences in the relative size 
of CSLs (Fig. 5d). This indicates that the doubling of cell volume induced 
by SBF2 knockdown is associated with disproportionate changes in size 
of different subcellular compartments, however, we cannot exclude 
other effects of SBF2 knockdown that are independent of cell size 
changes. Focusing on membraneless organelles, we found that the 
markers of the nucleolus and Cajal bodies (NCL and COIL, respectively) 
both increased their molecular abundance in larger SBF2 knockdown 
cells (Supplementary Fig. 5e,f). However, the size of the nucleolus in 
SBF2 knockdown cells was similar to that of controls (Fig. 5f). Because 
nuclear area also increases with cell volume upon SBF2 knockdown19, the 
size of the nucleolus as a fraction of the nucleus decreases. In contrast, 
Cajal bodies increased their combined size by approximately fivefold, a 
larger increase than the increase in nuclear or cell area (Fig. 5e). This was 
predominantly achieved by increasing the size of the individual Cajal 
bodies rather than by increasing their number per cell (Fig. 5e). In con-
trast, we found that P-bodies, a cytoplasmic membraneless organelle 
involved in RNA processing37, increased in number per cell rather than 
by increasing the size of individual P-bodies (Fig. 5g). When we binned 
cells by cell size (total protein content), we found that the number of 
P-bodies in each cell is closely related to cell size, independent of the 
genetic perturbation (Fig. 5h).

This analysis shows that CAMPA generalizes to a higher level of 
multiplexing and can identify CSLs not only across conditions with 
different molecular profiles but also across different CSL sizes. Mor-
phological properties of CSLs on a per-cell basis such as count and 
area can be used to compare and interpret changes in scaling behavior 
between conditions.

Linking cellular heterogeneity to subcellular reorganization
Finally, we use CAMPA to study how subcellular properties vary within 
cell populations, to examine its potential in uncovering links between 
subcellular properties and cellular states. Rates of RNA production are 
heterogeneous in cell populations19,38 and can be measured by RNA 
metabolic labeling with 5-ethynyl uridine39. Nuclear 5-ethynyl uridine 
intensity quantifies the amount of nascent RNA synthesized during a 
5-ethynyl uridine pulse at the single-cell level (Fig. 6a). To examine how 
differences in bulk RNA production are related to subcellular changes, 
we considered control cells (scrambled siRNA) from the CAMPA model 
trained on entire HeLa cells (Fig. 5) and binned these into either ‘low’ 
(lower quartile) or ‘high’ (upper quartile) RNA synthesis, using mean 
nuclear 5-ethynyl uridine intensity (Extended Data Fig. 9a). Examination 
of intensity fold-changes for each channel–CSL combination between 
these groups revealed changes in overall nuclear concentration of 
POLR2A and other proteins and protein states related to RNA synthe-
sis (Extended Data Fig. 9b), as previously observed19. Focusing on the 
subcellular level, we observed that PML bodies showed a change in the 
relative molecular composition of PML and SP100, the two markers 
of PML bodies used in this experiment. In cells with low RNA synthe-
sis, PML bodies were enriched in PML, while in cells with high RNA 
synthesis, PML bodies were enriched for SP100. These changes are 
difficult to observe in overall (all) or whole-nucleus (Nucleus (com-
bined)) CSLs, demonstrating the importance of quantifying this at the 
subcellular scale. These trends were recapitulated across the full range 
of 5-ethynyl uridine intensities (Fig. 6b), and were observed in the G1, S 
and G2 phases of the cell cycle (Extended Data Fig. 9c). PML bodies have 
previously been implicated in transcriptional regulation40, however, 
their molecular composition has not been linked to global changes 
in transcriptional output of single cells. Examining images directly 
revealed heterogeneity in PML body composition, both between and 
in cells (Fig. 6c). Specifically, cells with low RNA synthesis had PML 
bodies lacking SP100, while high RNA synthesis cells had PML bodies 
lacking PML. Classically, these bodies are defined as having both SP100 
and PML41. Detection of these nuclear bodies based only on PML or 
on SP100 (univariate) would have not assigned all these pixels as PML 
bodies, highlighting a key difference between CAMPA and univariate 
approaches. It is important to note, however, that, given that we did 
not use 5-ethynyl uridine intensity as a condition in the cVAE training, 
we would expect to see these unique pixel combinations annotated as 
different CSLs at higher clustering resolution (Extended Data Fig. 9d). 

Fig. 5 | Subcellular landmarks reveal coordination of organelle and cell size. 
a, CSLs identified using CAMPA from 43-plex 4i data of HeLa cells transfected 
with scrambled siRNA (top) or SBF2 siRNA (bottom). b, Relative mean intensity 
of each channel in each CSL, omitting the Antibody Aggregate CSL (see Extended 
Data Fig. 8 for all 21 cVAE latent space Leiden clusters). Heatmap z-scored 
by column to show the relative localization of each channel across CSLs. ER, 
endoplasmic reticulum. c, Example 4i images in the example SBF2 knockdown 
cell for comparison with identified CSLs. d, log2 fold-changes of number of 
pixels per cell assigned to each CSL when comparing SBF2 knockdown with 
control cells (scrambled siRNA). P values show the significance of the effect 
of SBF2 knockdown on the abundance of each CSL, as determined from the 
mixed-effect model. P values are corrected for multiple hypothesis testing 
using the Benjamini–Yekutieli method. Left panels show non-normalized 
changes in CSL sizes, right panels show changes normalized to the nuclear 
(upper) or cytoplasmic (lower) size changes, respectively. e, Upper: number of 
Cajal bodies per cell and their per-cell median areas. Before obtaining counts 

and areas per cell, small objects were removed (Methods). Lower: Cajal body 
area as a percentage of nuclear area or as un-normalized. Boxplots summarize 
distributions across cells (center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5-fold the interquartile range; outliers omitted for clarity). 
Scrambled, n = 2,301; SBF2, n = 430 (see Supplementary Table 5 for details).  
f, As in e for NCL and Nucleolus. g, As in e for DDX6 and P-bodies. h, Cells binned 
by cell size (total protein content). The upper panel shows the fraction of cells in 
each bin per condition. The middle panel shows the mean number of P-bodies per 
cell for each bin. The lower panel shows the average size of individual P-bodies 
(mean of median P-body area per cell). Bins with less than 10 cells per genotype 
were omitted. Error bars show 95% confidence intervals for mean (obtained using 
bootstrapping; n = 500). Fit lines show LOESS (locally estimated scatterplot 
smoothing) regression of binned data with the shaded region representing the 
95% confidence interval. Before obtaining counts per cell, small objects were 
removed (Methods). Scale bars: a, 20 µm; e–g, 20 µm.
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These results demonstrate that CAMPA can be used not only to reveal 
changes between perturbations but also to uncover links between 
global properties of cells and their subcellular organization.

Discussion
Quantifying changes in subcellular organization across perturbations 
in an automated manner is a central goal in highly multiplexed imaging. 
This has so far been difficult because perturbation-induced changes or 
heterogeneity in cell populations has prevented the consistent annota-
tion of subcellular structures. In CAMPA, we use a cVAE to learn robust 

perturbation- and cell state-independent latent representations of pix-
els that enables the identification of CSLs, found across perturbations 
and cell states. This differs from previous approaches based on direct 
clustering of multiplexed pixel profiles, which aim to identify pixel 
combinations that are unique or enriched in different experimental 
conditions or cell states. In contrast, CAMPA quantifies changes in all 
markers with respect to consistently identified landmarks. This leads to 
a more interpretable and quantitative assessment of changes between 
conditions that directly provides insights into changes in subcellular 
protein abundance and localization, and the relative positioning of 
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organizational units in the cell at subcellular length scales. Compared 
with direct pixel clustering, CAMPA also scales more readily to com-
pare large numbers of perturbations, because the number of CSLs that 
needs to be considered does not necessarily increase with the number 
of different perturbation conditions studied.

Cellular representations based on CAMPA-derived features can be 
used to compare multiple perturbations with one another simultane-
ously. We found that different sources of information (spatial versus 
intensity based) were complementary at distinguishing perturbations. 
Unlike other deep learning-based approaches for generating cellular 
representations, CAMPA-derived cellular representations are highly 
interpretable. For example, the observation that CX5461-treated cells 
are distinguishable from unperturbed cells using spatial represen-
tations leads readily to the identification of a change in nucleolar 
morphology in this perturbation. Because both 4i and CAMPA can be 
applied in high throughput, this approach has enormous potential for 
screening applications. We envisage that CAMPA-derived cellular rep-
resentations could be used as interpretable fingerprints to characterize 
and compare perturbations in terms of their subcellular phenotypes.

Here, we focused on subcellular imaging of proteins using 4i, 
however, we anticipate that CAMPA could readily be applied to other 
modalities such as multiplexed RNA fluorescence in situ hybridiza-
tion42 or integrated spatial genomics3 (RNA, proteins and DNA in the 
same cells), that is, technologies that have not yet been used to study 
perturbations at the subcellular scale. Currently, one limitation of 
CAMPA (and all previous pixel clustering approaches) is that pixels 
are assigned only to one cluster type. Pixel types therefore compete 
for allocation, with markers that show characteristic, sparse distribu-
tions in cells preferentially being used to define cellular landmarks. 
Limited optical resolution means that proteins that do not occupy the 
same physical space in the cell are nonetheless visualized in the same 
pixels. In our data, the number of structures visualized was appropri-
ate for the optical resolution used, as evidenced by the limited overlap 
between defining channels of CSLs, however, as we further increase 
the number of structures simultaneously visualized, this problem will 
become more pronounced. In CAMPA, this may be addressed in the 
future by using mixture models43 or approaches from fuzzy clustering44 
on the latent space, to enable pixels to be simultaneously assigned to 
multiple different CSLs.

CAMPA uses a cVAE to generate consistent latent representa-
tions of multiplexed pixel profiles across multiple conditions, which is 
computationally similar to approaches for integrating and clustering 
single-cell transcriptomics data14,45. Extensions and enhancements 
to the cVAE framework developed in this related field could easily 
be leveraged by CAMPA in the future. One example of this would be 
an adversarial loss to enforce strict disentangling of more complex 
condition effects and latent representation or ‘architecture surgery’46 
to enable integration of new data to already learned representations. 
In this way, CAMPA could contribute to building a queryable atlas of 
intracellular variation, onto which novel observations from different 
experimentalists could be projected to not only annotate CSLs, but 
also to compare with reference atlases. Altogether this will render 
CAMPA applicable to an even wider range of data and conditions and 
thus contribute to uncovering the rules by which spatial context shapes 
the activity of our genome across multiple scales.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01894-z.
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Methods
Cell lines and culture conditions
HeLa Kyoto (female) cell populations were derived from a single-cell 
clone and were tested for identity by karyotyping47. HeLa cells were 
cultured in high glucose DMEM supplemented with 10% FBS and  
1% GlutaMAX. Cells with low passage number (2–6) were used for  
all experiments.

184A1 (human female breast epithelial) cell populations were 
derived from a single-cell clone, and were used at low passage number 
(2–6) for all experiments. 184A1 cells were cultured in DMEM/F12 media 
supplemented with 5% horse serum, 20 ng ml−1 epidermal growth 
factor, 10 µg ml−1 insulin, 0.5 µg ml−1 hydrocortisone and 10 ng ml−1 
cholera toxin.

For all experiments, cells were grown and imaged in uncoated 
Greiner µClear plastic-bottom 394-well plates.

Chemical treatments
A total of 1,250 184A1 cells were plated 72 h before chemical treat-
ment. RNA polymerase I inhibitor, CX5461 (ref. 15) was dissolved in 
5 mN HCl at a concentration of 5 mM and used at 2 µM. XPB (TFIIH) 
inhibitor, triptolide16 was dissolved in dimethylsulfoxide (DMSO) at 
a concentration of 10 mM and used at 2 µM. CDK9 inhibitor AZD4573 
(ref. 17) was dissolved in DMSO at a concentration of 10 mM and used 
at 0.1 µM. Splicing factor 3b subunit 1 (SF3b1) inhibitor, meayamycin18, 
was dissolved in DMSO at a concentration of 10 µM and used at 10 nM. 
When applicable, the final DMSO concentration was 0.1%. Duration of 
chemical treatment is noted throughout the text and figures.

siRNA transfection
Transfection with siRNA was performed as previously described25. In 
brief, 700 HeLa cells were plated per well in 384-well plates for reverse 
transfection onto a mixture of pooled siRNAs (5 nM final concentration) 
and lipofectamine RNAiMAX (0.08 µl per well in OptiMEM) according 
to the manufacturer’s specifications. Cells were subsequently grown 
for 72 h at 37 °C in a final volume of 50 µl growth media, to establish 
efficient knockdown of the targeted genes19. SBF2 knockdown was 
validated previously19.

Image acquisition
Imaging was performed on an automated spinning-disk micro-
scope (CellVoyager 7000, Yokogawa, software vR1.17.05), equipped 
with four excitation lasers (405, 488, 568 and 647 nm) and two Neo 
sCMOS cameras (Andor), using a ×60/NA (numerical aperture) 1.27 
water-immersion objective lens. Bandpass emission filters centered 
on 445, 525, 590 and 675 nm were used for detection. The pixel dimen-
sions of images are 108 × 108 nm, with a theoretical lateral resolution 
of 214, 252, 283 and 324 nm (for emission at 445, 525, 590 and 675 nm, 
respectively). Images were acquired with a z-spacing of 0.8 µm, and 
were maximum-projected during acquisition.

In situ metabolic labeling of nascent RNA
Cells were pulsed with 5-ethynyl uridine for 30 min before fixation. 
Nascent RNA was visualized using the Click-iT RNA Alexa Fluor 488 
Imaging Kit (Invitrogen), following the manufacturer’s instructions 
except for the substitution of Alexa Fluor 488 azide with Alexa Fluor 
647 azide (Invitrogen).

Iterative indirect immunofluorescence imaging
4i was performed as previously described4 with two modifications: 
intercept blocking buffer (LI-COR Biosciences) was used for all block-
ing, primary and secondary antibody incubations, and 50 mM HEPES 
(Sigma) was included in imaging buffer, which was adjusted to a pH 
of 7.4. To detect primary antibodies, goat anti-rabbit IgG Alexa Fluor 
568 (Thermo Scientific) was combined with either goat anti-mouse 
IgG Alexa Fluor 488 (Thermo Scientific) or goat anti-rat IgG Alexa 

Fluor 488 (Thermo Scientific), all at a dilution of 1:500. The first cycle 
included no primary antibodies, to quantify the background level of 
fluorescence in all cells. Before 4i experiments, all antibodies were 
tested for compatibility with elution buffer using the following criteria: 
similar staining on normal and elution buffer-treated cells, minimal 
residual signal after elution and re-staining with secondary antibody. 
The following proteins and protein post-translational modifications 
were measured: ALYREF, CALR, CCNT1, CDK7, CDK9, COIL, CTNNB1, 
DDX6, GOLGA2, GTF2B, H2B, H3, H3K27ac, H3K4me3, HDAC3, HSPD1, 
KPNA1, KPNA2, NCL, NONO, PABPC1, PABPN1, pCDK9, PCNA, pMAPK1, 
PML, POLR2A, POLR2A-S2P, POLR2A-S5P, pRB1, pRPS6, PXN, RPS6, 
SETD1A, Sm antigen, SON, SP100, SRRM2, SRSF2, TUBA1A, U2SNRNPB 
and YAP1 (Extended Data Fig. 1). Primary antibodies used are listed in 
Supplementary Table 1.

DNA and total protein stain
In cycles 1–7, nuclear DNA was stained using 4ʹ,6-diamidino-
2-phenylindole dihydrochloride (DAPI) for 5–10 min at a final con-
centration of 0.4 µg ml−1 in PBS. For cycles 8–22, nuclei were visualized 
with chicken anti-H2B primary antibody (1:1,000, Abcam) and Goat 
anti-Chicken IgY Alexa Fluor 405 (1:500, Abcam). Before the last imag-
ing cycle, total protein was stained using Alexa Fluor 647 NHS Ester 
(succinimidyl ester) (Invitrogen) for 10 min at a final concentration of 
0.2 µg ml−1 in 50 mM carbonate-bicarbonate buffer, pH 9.2.

Nuclear and cell segmentation
We typically perform nuclear and cell segmentation as described previ-
ously48, however, this can result in segmentation artifacts when cells 
are irregularly shaped or highly crowded. To further improve this 
segmentation, we made use of additional information available in the 
multiplexed image data. Using DAPI, CALR (endoplasmic reticulum 
marker) and CTNNB1 (cell–cell contact marker) channels, we manually 
trained a pixel classifier in Ilastik (v1.3.3) to identify cell–cell boundaries 
(which were typically high in CTNNB1 and low in CALR). We refer to the 
probability map generated as ‘cell outlines’. To segment nuclei, we first 
used these outlines to mask the DAPI channel and then thresholded and 
segmented these objects as ‘primary’ nuclei. These were then used as 
seeds on the original thresholded DAPI image to segment ‘full’ nuclei 
using propagation. To segment cells, we then summed the total protein 
and CALR channels and again masked the resulting image with the cell 
outlines mask to segment ‘primary’ cells. Finally, the primary cells were 
used as seeds to obtain the final cell segmentation using a thresholded 
sum of total protein, CTNNB1 and TUB1A1 channels.

Data cleanup
After cell segmentation, border cells were excluded. Supervised 
machine learning models (support vector machines) were trained 
to exclude polynucleated cells and mitotic cells using the Tissue-
MAPS framework (https://github.com/TissueMAPS), as previously 
described19. After this cleanup we noticed that there were still cells with 
extreme DNA content. These were removed using manually derived 
thresholds based on histograms of DNA content. Cells with nuclei that 
moved during image acquisition or which were incompletely acquired 
in any cycle were identified and removed by examining the correlation 
of DNA content at the single-cell level across cycles. The first imaging 
cycle used a secondary antibody only with no primary antibody. Any 
cells with excessive background in this staining cycle were also removed 
from analysis. Supplementary Tables 2 and 4 list the number of cells 
in each of these classes.

Cell cycle classification
Cell cycle classification for 184A1 cells was performed using a machine 
learning approach with 5-ethynyl-2ʹ-deoxyuridine (EdU) ground truth 
data, as previously described19,20. The balanced accuracy of the S-phase 
classifier was 0.97. For HeLa cells, EdU wells were not included for the 

http://www.nature.com/naturemethods
https://www.ncbi.nlm.nih.gov/nuccore/CX546115
https://github.com/TissueMAPS


Nature Methods

Article https://doi.org/10.1038/s41592-023-01894-z

SBF2 condition, therefore no independent ground truth was available. 
In this case, S-phase cells were manually annotated using PCNA and 
DAPI texture features by iterative supervised support vector machine 
training in the TissueMAPS framework.

Datasets for cVAE training
Two datasets were collected for training and evaluating cVAE models. 
Each dataset was split into training, validation and test cells (80%, 10%, 
10%, respectively, for each dataset). Following the split, multiplexed 
pixel profiles from the cells were extracted together with their local 
3 × 3 neighbors to make the cVAE latent representation more robust to 
noise. When one or more of the 3 × 3 neighbors of the pixel of interest 
were outside of the segmented region of the cell, the molecular profile 
of the missing neighbors was replaced with the mean multiplexed pixel 
profile inside the 3 × 3 window.

The first dataset consisted of 184A1 cells across six chemical treat-
ments (Supplementary Table 3), using 34 channels localizing (at least 
partially) to the nucleus (ALYREF, CCNT1, CDK7, CDK9, COIL, DAPI, 
GTF2B, H2B, H3, H3K27ac, H3K4me3, HDAC3, KPNA1, KPNA2, NCL, 
NONO, PABPC1, PABPN1, pCDK9, PCNA, PML, POLR2A, POLR2A-S2P, 
POL2RA-S5P, pRB1, RPS6, SETD1A, Sm antigen, SON, SP100, SRRM2, 
SRSF2, U2SNRNPB, YAP1). For each nucleus in the training and valida-
tion split, 0.5% of all molecular profiles were extracted for cVAE training 
and validation. The second dataset consisted of control and SBF2 knock-
down HeLa cells (Supplementary Table 5), using 43 channels (including 
all of those used in the first dataset together with pRPS6, pMAPK1, 
CALR, CTNNB1, PXN, HSPD1, GOLGA2, TUBA1A, DDX6). For each cell 
in the training and validation split, 5% of all molecular profiles were 
extracted for cVAE training and validation. See Supplementary Table 6  
for the exact number of cells and molecular profiles in each dataset.

Preprocessing of datasets
Immunofluorescence background levels were determined in each 
imaging cycle from control wells stained with secondary antibodies 
(without primary antibodies). These values were subtracted from the 
molecular profiles. Molecular profiles were normalized using 
per-channel 98th quantile normalization xnorm = x/q98.

This background subtraction and normalization was also applied 
to the multiplexed pixel profiles before obtaining a direct clustering.

cVAE training
The cVAE models the pixel profiles as samples generated by a generative 
conditional distribution pθ(x|z, c)  (also named the probabilistic 
decoder), where z is a latent variable generated from a prior distribu-
tion pθ(z|c), and c represents the condition labels (for example, pertur-
bation and cell cycle state of the cell that the current pixel profile is 
coming from). For a given x, the latent variable z is inferred using a 
probabilistic encoder qφ(z|x, c), which approximates the intractable 
true posterior pθ(z|x, c). Using variational inference, parameters θ and 
φ are jointly tuned by maximizing the evidence lower bound of the 
marginal log-likelihood log(pθ(x|c)) (refs. 10,49):

L(x, c;θ,φ) = Eqφ(z|x,c)[logpθ(x|z, c)] − DKL(qφ(z|x, c)||pθ(z|c)) ≤ logpθ(x|c)

With this formulation, the pixel profiles x are modeled by latent 
distribution z and condition labels, which encourages the model to 
encode non-condition specific variation (such as subcellular dif-
ferences in intensity that occur across all conditions) in the latent 
distribution.

To improve training stability and samples from the decoder, we 
use σ-VAE50 to learn the variance of the decoder, to produce calibrated 
decoders:

L(x, c;θ,φ) = Dlnσ + D
2σ2 MSE( ̂x, x) + DKL(qφ(z|x, c)||pθ(z|c))

with x ∈ RD being the center pixel of the input and ̂x = pθ(x|z, c) the VAE 
reconstruction of x. We use the analytical solution for the variance50, 
which minimizes the (weighted) mean squared error loss (MSE) while 
also minimizing the logarithm of the variance:

σ∗2 = MSE(x,μ)

where μ is the estimated latent mean for x. As prior distribution pθ(z|c) 
we choose:

pθ(z|c) = p(z) = N(0, 1).

The input to the model was a 3 × 3 local neighborhood around the 
pixel of interest, and the output was the reconstructed center pixel. 
The encoder consisted of an initial 1 × 1 × 32 convolutional layer to 
mix the channels of individual pixel inputs, followed by three fully 
connected layers (32, 16, 16 nodes), and a linear decoder. Conditions 
were provided via a two-layer condition encoder (10, 10 nodes) to the 
encoder and decoder by concatenating the learned condition repre-
sentations with pixel inputs and latent space, respectively. Before 
concatenating to the pixel inputs, condition representations were 
broadcast to match the shape of the input patch. The size of the latent 
representation was 16.

Training was done for 25 epochs with a batch size of 128 and a 
learning rate of 0.001 (0.0001 for the HeLa dataset). For the 184A1 
dataset, the cVAE was trained using perturbation and cell cycle stage 
as conditions by concatenating one-hot encoded representations of 
both condition inputs. Note that although the control DMSO treat-
ment and untreated cells were used as different conditions in the cVAE 
model, there was no significant difference in mean intensity between 
them and they are pooled together for the remainder of the analysis. 
Together these untreated and DMSO-treated cells are referred to as 
‘unperturbed’. For each quantitative comparison between conditions, 
we validated that DMSO and untreated cells showed no differences. 
These comparisons are shown in Supplementary Figs. 2a,c and 3a. For 
the HeLa dataset, the cVAE was similarly trained using siRNA condition 
and cell cycle stage as conditions.

Clustering
For clustering, the dataset was subsampled to 150,000 (300,000 for 
the HeLa dataset) multiplexed pixel profiles. To obtain CSLs, a k-nearest 
neighbor graph (k = 15) of cVAE latent representations of the subsam-
pled data was computed and partitioned with the Leiden algorithm13 
using a resolution of 0.5 (0.9 for the HeLa dataset). For comparison, the 
subsampled multiplexed pixel profiles were also directly clustered by 
applying the Leiden algorithm to the k-nearest neighbor graph of the 
multiplexed pixel profiles with varying resolutions of 0.2, 0.4, 0.6, 0.8, 
1.2, 1.6 and 2.0. To project cluster assignments to the entire dataset, 
each data point was assigned to the most frequent cluster within 15 
nearest neighbors of the subsampled, clustered set. Neighbors were 
found using approximate nearest neighbor search51.

To assess the impact of subsampling the data before clustering, 
we varied the random initialization for the Leiden algorithm (five 
different initializations), the random seed for the subsampling (five 
different subsamples) and the size of the subsample, resulting in 5 × 5 
alternative clusterings for each subsample size of 1,100, 2,300, 4,600, 
9,300, 19,000, 37,000, 75,000, 150,000 and 300,000. The overlap of 
these clusterings with the final CSLs was computed using the adjusted 
mutual information (AMI)52 and the adjusted Rand index (ARI)53,54 (see 
Supplementary Fig. 1a,b).

Let U = {U1,U2,…,Uc}  be the ground truth CSL clustering, and 
V = {V1,V2,… ,Vk} any other clustering of n data points. We calculated 
AMI(U,V) and ARI(U,V) for all alternative clusterings V to compare 
clusterings to final CSLs. In addition, we computed the overlap of the 
resulting clusterings with the final annotated CSLs using the 
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homogeneity score55 (see Supplementary Fig. 1c) h = 1 − H(U|V)/H(U), 
with entropy H(U) = −∑c

i=1
|Ui |
n

log( |Ui |
n
).

Homogeneity was calculated for each individual CSL i using a 
modified ̂U = {Ui,U/Ui}, which contained only the CSL i and one other 
cluster grouping all other CSLs. This cluster instability analysis could 
be used to refine the antibody panel for future experiments, by indicat-
ing those CSLs for which additional channels might be needed.

To validate CSL pixel assignments, we compared CSLs with manual 
segmentations of the underlying subcellular structures obtained 
by training Ilastik24 (v1.3.3) segmentation models on single-channel 
intensities of canonical markers for these membraneless organelles 
(compare with Extended Data Fig. 5). We quantitatively compared 
these manual segmentations with their respective CSLs using the 
F1-score (a measurement of classification accuracy) using the manual 

segmentations as the ground truth: F1 =
TP

TP+0.5(FP+FN)
, where TP denotes 

the number of true positives, FP denotes the number of false 
positives, and FN, the false negatives.

Annotation
To aid interpretability we manually annotated CSLs with biologically 
meaningful labels. CSLs corresponding to the same biological structure 
may be merged into the same annotated CSL. This annotation was done 
in an iterative fashion and considered the following factors: presence of 
canonical organelle markers in the top enriched channels in each CSL in 
unperturbed (control) cells (if no canonical markers were present, con-
sider the CSL as ‘background’ (that is, nucleoplasm or cytoplasm)); spatial 
distribution of CSLs compared with the spatial distribution of canonical 
markers of organelles in unperturbed (control) cells; and Human Protein 
Atlas subcellular localization (https://www.proteinatlas.org)23 of most 
enriched channels in each CSL, weighted by z-scored channel intensity.

To simplify the presentation of results, we merged those CSLs 
that, according to the above criteria, correspond to the same biological 
structure. The merged CSLs either corresponded to the same structure 
that displayed within-condition variation (for example, Nucleoplasm 
CSLs in Fig. 2, see Extended Data Fig. 4c) or to different spatial locations 
of the same biological structure (for example, P-body CSL in Fig. 5,  
see Extended Data Fig. 8b).

Feature extraction using CSLs
For quantitative analysis of differences between conditions, several 
statistics using the CSLs were computed.

Per-CSL mean intensity. Per-CSL mean intensity values were calcu-
lated for each cell and CSL and averaged for each condition.

CSL object features. For each cell and CSL, connected components 
using 8-connectivity were calculated. To filter out noise and obtain 
more reliable estimates, only components consisting of more than 10 
pixels were counted. In addition, we removed small components from 
each cell by sorting all components by size and removing the smallest 
components up to a cumulative area of <10% of the total area of the CSL 
in that cell (Supplementary Figs. 6 and 7). If no component was smaller 
than 10% of the total area, no components were removed from that cell.

After filtering, the number, mean or median area, and mean 
or median circularity of these components was extracted and 
median-averaged across cells for each condition.

Circularity c was computed as c = 4πa/p2 where a is the area and p 
the perimeter of the component.

Spatial co-occurrence. Spatial co-occurrence12,32 cij[da ,db] captures the 
relative probability that two CSLs (i, j) are found within a distance 
interval [da,db] from one another:

cij = p[da ,db]( j|i)/p[da ,db](i)

Distance intervals were log-spaced to enable a focus on small-scale 
changes in spatial reorganization. For the 184A1 dataset, 19 log-spaced 
distance intervals between 2 and 80 were used. For the HeLa dataset, 
27 log-spaced distance intervals between 2 and 320 were used. The 
maximum distance of 80 pixels (320 pixels) was chosen to be approxi-
mately the 99th quantile of the maximum radius of the nucleus (of the 
cell for the HeLa dataset).

Statistical analysis of mean intensity and CSL abundance 
changes
To quantify the changes in channel intensities in CSLs, we estimated 
the fold-difference of each channel between treated and unperturbed 
control cells in the geometric mean of the per-CSL mean intensity. 
Specifically, if Yijk denotes the mean intensity for CSL k in cell j of well i, 
we fit a hierarchical linear mixed-effects model:

log(Yijk) = μk + γkti + βik + ϵijk

where μk denotes the (log) geometric mean of CSL k in the control group 
and ti is an indicator variable for condition (ti = 1 for treated wells and 
0 for unperturbed control wells), such that exp(γk) is the treatment 
effect on CSL k. To account for clustering, βi ∼ N(0,Σw) is a multivariate 
normal well-specific random effect, with mean zero and general covari-
ance matrix Σw, and ϵij is a multivariate normal random error with mean 
zero and covariance matrix Σϵ(i) = StiRSti where Sti is a diagonal matrix 
of (condition-specific) standard deviations of the CSL-specific errors, 
and R is an unstructured correlation matrix that captures the relation-
ships between CSLs in a single cell. Before calculating fold-differences 
and hypothesis testing, we removed compartments of size zero.

For each CSL we tested the null hypothesis of no treatment effect 
(γk = 0) using a Wald test. To determine relative relocalization of pro-
teins and protein states rather than overall changes in abundance, the 
fold-changes in each CSL were normalized by the whole-nucleus 
fold-changes. That is, if k = 0 denotes mean intensity across the whole 
nucleus, then exp(γk − γ0) is the compartment-specific treatment effect 
for CSL k, and we similarly tested γk = γ0 using a Wald test. CSL sizes 
were analyzed in the same way as mean channel intensities.

We used the nlme package56 (v3.1–153) in R v3.6.3 (ref. 57) to fit 
these models, and used emmeans58 (v1.7.0) to extract estimates and 
perform the hypothesis tests of interest. For computational effi-
ciency, we fitted a separate model for each CSL for each marker (using 
only the data from that CSL and the whole nucleus), and used the con-
servative ‘containment’ method59 to determine the degrees of free-
dom of the Wald statistic in the analyses of CSL versus whole-nucleus 
differences. The false discovery rate was controlled across all 
combinations of CSLs and channels for each treatment using the  
Benjamini–Yekutieli method60.

Comparison of perturbations
To compare perturbations with respect to different aspects of cellular 
organization, we generated three separate cellular representations: 
mean nuclear intensities of all proteins; per-CSL mean intensities of all 
proteins; and pairwise spatial co-occurrence between CSLs.

To measure how well these different cellular representations 
separate cells from different perturbations, we calculated silhouette 
scores61 (using L1 distance) S(p,q) for each pair of perturbations p, q:

S(p,q) = 1
|p| ∑i∈p

(dq(i) − dp(i))
max (dq(i),dp(i))

With dp (i) being the mean L1 distance of i to all elements in perturba-
tion p:

dp(i) =
1
|p| ∑j∈p

L1(i, j)
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used to generate all results and figures reported in this manu-
script are available at https://doi.org/10.5281/zenodo.7299516 (ref. 62).  
Pre-trained models and clusterings reported in the manuscript are avail-
able at https://doi.org/10.5281/zenodo.7299750 (ref. 63). CSL-derived 
features from the 184A1 and the HeLa datasets are available at https://
doi.org/10.6084/m9.figshare.19699651. The Human Protein Atlas, used 
to annotate CSLs, is available at www.proteinatlas.org.

Code availability
Analysis was performed using CAMPA, which is available at https://
github.com/theislab/campa with documentation at https://campa.
readthedocs.io. All scripts necessary for reproducing the results 
and figures (except schematic figures Fig. 1a–c and Fig. 3f) can be 
found at https://github.com/theislab/campa_ana. Nuclear and cell 
segmentation, identification of border cells, and cell cycle classifi-
cation was performed using TissueMAPS, an open-source project 
for high-throughput image analysis available at https://github.com/
pelkmanslab/TissueMAPS. The TissueMaps analysis pipeline descrip-
tion with module files containing parameter settings used for the 
preprocessing of data in this paper is provided at https://github.com/
theislab/campa_ana.
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Extended Data Fig. 1 | Iterative Indirect Immunofluorescence Imaging (4i) at high spatial resolution. Example intensity images with overlaid cell segmentation of 
unperturbed 184A1 cells for each of the 43 channels measured by 4i (n=4 unperturbed replicate wells imaged; cell numbers in Supplementary Table 3).
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Extended Data Fig. 2 | Direct pixel clustering and VAE latent space clustering 
are perturbation dependent at different Leiden clustering resolutions. a: 
Left: UMAP representation of VAE latent space colored by perturbation. Middle: 
Example cells from each perturbation colored by VAE latent space clustering. 
Right: Fraction of pixels assigned to each cluster per perturbation colored by 

VAE latent space clustering. b: Fraction of pixels assigned to each cluster per 
perturbation colored by direct pixel clustering for Leiden resolutions 0.2, 0.4, 
0.6, 0.8, 1.2, 1.6, 2.0 c: Fraction of pixels assigned to each cluster per perturbation 
colored by cVAE latent space clustering (CSLs) before annotation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Direct pixel clustering is cell cycle-dependent at 
different Leiden clustering resolutions. a: Fold-change in nuclear mean 
intensity in S and G2 cells compared to G1 cells, for all proteins with nuclear 
localization. P-values show significance of perturbation effect on mean 
intensity, as determined from the mixed-effect model (Wald test, multiple 
testing correction using Benjamini–Yekutieli method). b: Example intensity 
images of cell cycle specific markers PCNA and pRB1 in cells from G1, S, and G2 
cell cycle phases (d). c: Example cells in b, colored by CSL clusters. d-e: UMAP 
representation of multiplexed pixel profiles from unperturbed cells (d) and of 
corresponding cVAE latent space (e) colored by cell cycle. f: Comparison of cell 
cycle-specificity of 4i pixel profiles and cVAE latent space coordinates. Plots 
show balanced accuracy scores of pairwise binary logistic regression classifiers 
predicting cell cycle from normalized 4i pixel profiles or latent representations of 

pixels. Accuracy values of 0.5 indicate random chance (perturbation information 
is not present in the data). Latent space contains less cell cycle information than 
pixel profiles. g: Fraction of pixels assigned to each cluster per cell-cycle stage 
colored by latent space clustering and annotation. h: Comparison of cell-cycle-
specificity of direct clustering at different Leiden resolutions (0.2, 0.4, 0.6, 0.8, 
1.2, 1.6, 2.0) with cVAE latent space clustering. Plots show coefficient of variation 
of the fraction of pixels in each cell-cycle stage assigned to each cluster. Boxplot 
summarises results for all clusters with resulting cluster number n shown 
above. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, all data points. i: Fraction of pixels assigned to each 
cluster per cell-cycle stage colored by pixel profile clustering for resolutions 
0.2,0.4,0.8,1.2,1.6,2.0.
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Extended Data Fig. 4 | Details of cVAE clustering and annotation (184A1 
cells). a: Mean intensities of each channel across different clusters (unperturbed 
184A1 cells). Original Leiden clusters obtained from cVAE latent space are 
shown on the right and their corresponding annotation is shown on the left. 
Four original clusters are manually merged into the ‘Nucleoplasm’ CSL, as 
described in the main text. Values z-scored by channel (compare with Figure 
2c). b: Automated annotations from the Human Protein Atlas. For each CSL a 
maximum of 3 channels with a z-score > 1 (from a) were used to query HPA for 
subcellular localization of these channels. Shown is the result of these queries 
for each CSL, weighted by the mean z-score of the channel (shown in a). c: 
Coefficient of variation (CV) of CSL sizes in each cell across all cells in a well. 
Original nucleoplasm clusters have a large CV (variable abundance between 
cells), and are merged to one annotated CSL (shown in a). Center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 
outliers. n=21 wells from 9 perturbations. d: Importance of condition input for 
reconstructing each channel. Saliency scores are calculated with integrated 

gradients22 for every output channel with respect to the latent representation 
and condition input. The importance of the condition for each output channel is 
calculated as the fraction of absolute scores for the condition, normalized by the 
absolute sum of scores for the entire input (condition and latent representation). 
Shown is the maximum condition importance of each channel; the median 
condition importance for each perturbation and channel; and the median 
condition importance for each cell cycle stage and channel. Large values indicate 
that the condition information was important for correctly reconstructing this 
channel, and the cVAE focused less on the latent representation. e: Scatter plot 
of condition importance (shown in d) vs Log2 fold-change in overall cellular 
intensity for each channel and perturbation (shown in Fig. 1d). Channels that 
show an overall perturbation-dependent effect in intensity also have high 
condition-importances, meaning that the cVAE preferentially uses the  
condition label and not the latent representation to model the pixel intensities 
for these channels.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparison of CSL-derived nuclear speckles/PML 
bodies with supervised segmentation of nuclear speckles/PML bodies. 
a: CSLs generated using CAMPA for an example 184A1 nucleus. b: Measured 
intensities of canonical nuclear speckle markers SON and SRRM2. c: Probability 
maps of nuclear speckles generated through supervised pixel clustering of 
single-channel images in Ilastik. d: Nuclear speckle classifier derived from 
thresholding the probability map at P=0.95. e: Comparison of pixels assigned 
to nuclear speckles using supervised classifiers based on SON, SRRM2 with 
nuclear speckle CSL. f: Quantitative comparison of the different classification 
approaches using SON and SRRM2 classifiers as the ground truth. x-axis 

shows the value at which the probability map is thresholded to generate the 
segmentation. Dashed line at P=0.95 is the classification shown in d. Metrics 
computed on a random 10% subsample of all data. g: F1-scores for each 
comparison for all perturbations individually. Data from all pixels in a single 
well for each condition. Probability map threshold at P=0.95. h-j: As in b-d for 
canonical PML body markers SP100 and PML. Classification in i is the probability 
map thresholded at P=0.6. k: As in e for PML bodies. l: As in f for PML bodies. 
Dashed line at P=0.6 is the classification shown in j. m: As in g for PML bodies. 
Probability maps thresholded at P=0.6.
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Extended Data Fig. 6 | Detailed comparison of CAMPA and direct pixel 
clustering in perturbed 184A1 nuclei. a: Mean intensities of each channel 
across different clusters. Clusters obtained from direct Leiden clustering 
(resolution 1.2) of pixel profiles for all 34 nuclear channels across all six 
experimental conditions. Clusters are those shown in Fig. 1h. Values z-scored 
by channel. b: Log2 fold-change in relative cluster abundance in perturbation 
conditions, compared to unperturbed cells. c: Example cells treated with  

TSA or unperturbed. Direct pixel clusters and H3K27ac levels shown.  
d: CAMPA-derived CSLs for the cells shown in c. e: Log2 fold-change of mean 
intensities for each channel in each CSL, or number of pixels in each CSL, 
when comparing TSA-treated with unperturbed control cells. P-values show 
significance of TSA treatment on levels for each channel/CSL, as determined 
from a mixed-effect model (Wald test, multiple testing correction using 
Benjamini–Yekutieli method).

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01894-z

Extended Data Fig. 7 | Pairwise co-occurrence scores between CSLs. a: Pairwise mean log2 spatial co-occurrence between all CSLs as a function of distance on x-axis 
(minimum of distance interval; on log scale) for CX5461-treated and unperturbed cells. Shaded regions indicate 95% confidence intervals for the mean.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Details of cVAE clustering and annotation (HeLa cells, 
scrambled siRNA). a: Mean intensities of each channel across different clusters. 
Original Leiden clusters obtained from cVAE latent space are shown on the right 
and their corresponding manual annotation is shown on the left. Five original 
clusters are manually merged into the ‘Cytoplasm’ CSL. Two original clusters  
are manually merged into the ‘P-bodies’ cluster. Values z-scored by channel  
(c.f., Fig. 5b). b: Cluster 13 and 19, which are merged into the ‘P-bodies’ cluster, and 
DDX6 intensity visualized in two example cells from scrambled siRNA and SBF2 
siRNA. Cluster 19 corresponds to P-body center with very high DDX6 intensity, 
cluster 13 corresponds to P-body periphery with lower DDX6 intensity. Both 
P-body clusters show identical behavior when comparing scrambled to SBF2 
(Supplementary Fig. 5b, d). c: Automated annotations from the Human Protein 

Atlas (HPA). For each CSL a maximum of 3 channels with a z-score > 1 (from a) were 
used to query HPA for subcellular localization of these channels. Shown is the 
result of these queries for each CSL, weighted by the mean z-score of the channel 
(shown in a). d: Example HeLa cells colored by CSLs obtained from 43-plex 
HeLa cells (c.f., Fig. 5) and CSLs obtained from 34-plex 184A1 cells (nucleus only, 
c.f., Fig. 2). e: Comparison of CSLs obtained from 43-plex HeLa cells and CSLs 
obtained from 34-plex 184A1 cells on HeLa cells. Shown is the intersection over 
union (IOU) of the common CSLs from both clusterings. Nucleolus, Cajal bodies, 
Nucleoplasm and Nuclear speckles have high IOU scores. Nuclear speckles, PML 
bodies, and Nuclear periphery have lower IOU scores, indicating either cell-line 
specific differences, or that information from the additional channels in the  
43-plex HeLa dataset results in a slightly different definition of these CSLs.
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Extended Data Fig. 9 | Cellular RNA synthesis rates are associated with 
altered molecular composition of PML bodies. a: Distribution of RNA synthesis 
rates in the cell population, as quantified by mean nuclear EU incorporation. 
Cells are binned into upper and lower EU intensity quartiles. b: Log2 fold-change 
of mean intensities for each channel in each CSL, or number of pixels in each 
CSL, when comparing HeLa cells with high RNA synthesis to cells with low RNA 
synthesis. P-values show significance of the difference in mean intensity for each 
channel/CSL, as determined from the mixed-effect model (Wald test, multiple 
testing correction using Benjamini–Yekutieli method). c: Pearson correlation 

of mean PML body intensity of PML and SP100 with mean nuclear EU in each 
cell cycle phase. Violin plots show the distribution over 500 bootstrapped 
correlations with error bars representing 95% confidence intervals. Center dot, 
mean. d: UMAP of cVAE latent representation of 10% of all PML body pixels from 
scrambled HeLa cells. Pixels are colored by PML body markers SP100 (left) and 
PML (right). PML body pixels are heterogeneous, from PML-enriched to SP100-
enriched, and the latent representation conserves this heterogeneity. At larger 
Leiden resolutions this CSL might be split up into several clusters.
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