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In the past few years, mathematical modeling approaches in biology have begun to fulfill their promise by assisting in the

dissection of complex biological systems. Here, we review two recent examples of predictive mathematical modeling in plant

biology. The first involves the quantitative epigenetic silencing of the floral repressor gene FLC in Arabidopsis, mediated by a

Polycomb-based system. The second involves the spatiotemporal dynamics of telomere bouquet formation in wheat-rye

meiosis. Although both the biology and the modeling framework of the two systems are different, both exemplify how

mathematical modeling can help to accelerate discovery of the underlying mechanisms in complex biological systems. In

both cases, the models that developed were relatively minimal, including only essential features, but both nevertheless yielded

fundamental insights. We also briefly review the current state of mathematical modeling in biology, difficulties inherent in its

application, and its potential future development.

During the last decade, mathematical modeling has

finally established itself as a mainstream methodology

in the analysis of biological systems. The daunting com-

plexity of biology, with the systems-level emergence of

behaviors not present at the level of individual molecules,

decidedly favors a modeling approach. In this chapter, we

examine two applications of mathematical modeling in

two very different areas of biology: one in epigenetic

regulation and the other in the spatiotemporal dynamics

of meiosis. In both cases, the specific application is to

plants (Arabidopsis and wheat-rye), but the overall con-

clusions are likely to be widely applicable.

Despite their considerable differences, both systems

show one overall similarity, namely, their ability to reli-

ably function even in the presence of high levels of fluc-

tuations. For the case of epigenetics, genes can be stably

silenced despite the large fluctuations introduced, for

example, at DNA replication. For the case of meiotic

dynamics, the telomere bouquet reliably forms on a rel-

atively short timescale, despite, for example, the poten-

tially disordered nature of the cytoskeleton. In this

review, we highlight this unifying issue and emphasize

the minimal nature of the modeling. In biology, it is all

too easy to use a mathematical model that is overly com-

plex and therefore underconstrained by the available

data. Rather, our approach has been to construct minimal

models that can nevertheless make unexpected, ideally

relatively qualitative, predictions about the focused

system in question. These predictions can then be exper-

imentally tested and the results fed back into further mod-

el refinement.

In our conclusion, using the above two studies as exam-

ples, we briefly comment on the future of mathematical

modeling in biology, discussing in particular its relation-

ship with bioinformatics. Our hope is that the potential of

modeling will become even more widely exploited in the

years ahead so that the complex problems of biology, in

plants and beyond, can be dissected more efficiently.

EXAMPLE 1: CHROMATIN-BASED

EPIGENETICS

Epigenetic change is often defined as a change in the

expression state of a gene not involving a mutation but

that is nevertheless inherited even in the absence of the

initiating signal. Epigenetic memory has been studied for

many years in systems such as the lysis-lysogeny switch

in bacteriophage l and the lac operon in Escherichia coli.

In both of these systems, the epigenetic information is

stored globally, in the concentration of a diffusible factor.

Positive feedback loops stabilize this concentration so

that the state is stable and heritable through cell division

(Ptashne and Gann 2002). It has been proposed more

recently that regions of chromatin can be programmed

into repressive and active states that control the expres-

sion states of their underlying genes and are mitotically

heritable (Moazed 2011). In this case, epigenetic memory

is thought to be stored locally in the structure of the chro-

matin. To store heritable information, this chromatin

“state” must, however, be self-perpetuating despite noisy

nucleosome removal, DNA replication and mitosis. Ex-

actly how this is accomplished is currently the subject of

much research.

An example of epigenetic memory in which informa-

tion is believed to be encoded locally is in gene regulation

by the Polycomb and trithorax groups (PcG/trxG) of
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proteins. These proteins were initially discovered in Dro-

sophila, in which mutants exhibit homeotic transforma-

tions caused by misexpression of key developmental

regulatory genes. The expression state of PcG/trxG tar-

gets is inherited by daughter cells and PcG/trxG compo-

nents are often continuously required for maintenance of

gene expression throughout development (Schwartz and

Pirrotta 2007). Polycomb complexes have also been char-

acterized in other multicellular eukaryotes including Ara-

bidopsis thaliana, in which they are also required for

epigenetic repression of developmental genes (Hennig

and Derkacheva 2009).

QUANTITATIVE EPIGENETIC

REPRESSION OF FLC

In Arabidopsis, prolonged exposure to cold tempera-

tures accelerates flowering in a process called vernaliza-

tion. Prolonged cold causes epigenetic repression of

FLOWERING LOCUS C (FLC), a gene that encodes a

MADS domain protein that negatively regulates the ex-

pression of genes that promote the floral transition. This

process allows winter-annual Arabidopsis accessions to

repress flowering until after a period of prolonged cold, to

align flowering and seed production with spring (Crev-

illen and Dean 2010). FLC repression is epigenetic in the

sense that it remains stable on return to warm conditions

and quantitative in the sense that longer periods of cold

exposure lead to progressively lower levels of FLC ex-

pression (Fig. 1A).

A necessary component of Polycomb-mediated gene

repression is thought to be covalent modifications to his-

tones at Polycomb target genes. Specifically, Polycomb

repressive complex 2 (PRC2) is responsible for histone

H3 lysine 27 trimethylation (H3K27me3). Before cold

exposure, a core PRC2 complex is present at FLC (Fig.

1B). However, after cold exposure, additional plant ho-

meodomain (PHD) proteins are found to be associated

with the core PRC2 (Fig. 1C) (De Lucia et al. 2008).

Recruitment of PHD proteins during the cold coincides

with the deposition of H3K27me3 immediately down-

stream from the transcription start site of FLC, at the

so-called “nucleation region” (Fig. 1C), possibly targeted

by a specific DNA sequence. Subsequently, on return to

the warm, both H3K27me3 and PHD-PRC2 complexes

spread over the gene body leading to stable epigenetic

repression of FLC (Fig. 1D) (De Lucia et al. 2008).

Although H3K27me3 over the gene body appears to

be necessary for epigenetic FLC repression, genetic stud-

ies suggest that it is not sufficient. For example, plants

containing mutations in VERNALIZATION 1 (VRN1)

show increases in H3K27me3 levels in response to
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Figure 1. FLC expression and chromatin state during vernalization. (A) FLC is stably repressed in response to cold exposure. Longer
periods of cold result in greater FLC repression and earlier flowering after the return to warm. (B) FLC chromatin during vernalization.
Core PRC2 is present on FLC chromatin before cold exposure. (C ) After cold exposure, H3K27me3 (red ovals) accumulates together
with PHD-PRC2 complexes at the nucleation region. (D) After a transfer back to warmer temperatures, H3K27me3 and PHD-PRC2
complexes spread outward from the nucleation region to cover the FLC gene body. (Adapted from Song et al. 2012.)
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vernalization, yet they fail to maintain repression of FLC

during the subsequent warm (Bastow et al. 2004).

Several components of the PHD-PRC2 complex re-

sponsible for vernalization are conserved in other higher

eukaryotes and it has been shown that the complex con-

tains modules for both deposition of H3K27me3 and

binding H3K27me3. These results have led to the pro-

posal that PRC2 acts to “read” and “write” H3K27me3,

to maintain a region of chromatin in a repressed state

(Hansen et al. 2008; Margueron et al. 2009). This positive

feedback is a central idea in the mathematical model of

cold-induced FLC repression proposed by Angel et al.

(2011).

MATHEMATICAL MODEL

OF VERNALIZATION

Although many of the components implicated in epi-

genetic silencing of FLC had been identified, as de-

scribed above, a mechanistic understanding of how the

pieces fit together into a coherent whole had not been

formulated. In particular, it was unclear how this complex

system epigenetically stores quantitative information dur-

ing the duration of cold exposure. Consequently, we

turned to mathematical modeling (Angel et al. 2011) to

help to resolve these issues. We used an underlying

framework from earlier theoretical work on stochastic

switching of the epigenetic state at the Schizosaccharo-

myces pombe mating-type locus (Dodd et al. 2007). In the

minimal model of Angel et al. (2011), histones can either

be unmarked or in one of two opposing modification

“states.” Each of these opposing states recruits protein

complexes that deposit more of their respective modifi-

cation and remove the opposing modification from other

histones in the locus (Fig. 2A). Under the continual action

of such a mechanism, the histone modification status of a

region of chromatin can become self-sustaining: Histone

modifications, which are lost by nucleosome swap-out,

noisy enzymatic activity, or DNA replication, will be re-

placed by protein complexes that deposit new modifi-

cations of the same kind. In part, the stability of these

chromatin domains comes from their size, with larger

regions being inherently more stable. However, two other

conditions have also been shown to be required for stabil-

ity: cooperativity in the action of the histone-modifying

enzymes (see Fig. 2A) and long-range interactions be-

tween histones in the locus. This minimal model is clearly

a gross oversimplification of the actual in vivo dynamics,

yet, as we will see below, it is able to make testable

predictions.

Dodd et al. (2007) showed that systems with mutually

antagonistic histone modifications can lead to bistable

regions of chromatin, whereas Angel et al. (2011) showed

how switching between these active and repressed states

could be controlled to quantitatively modulate the ex-

pression of a gene in response to an environmental stim-

ulus. At the single-cell level, models of this type have

only two stable states. However, the quantitative nature

of FLC repression in response to cold implies a continuum

of stable states at the whole-organism level. In the vernal-

ization model, after cold exposure, each cell can be in

either a high FLC expression state (with low H3K27me3

over the gene) or a low FLC expression state (with high

H3K27me3 over the gene). As in the model of Dodd et al.

(2007), epigenetic stability is generated by histone mod-

ification dynamics with nonlinear positive feedback.

However, in the vernalization model, increasing duration

of cold exposure leads to a greater proportion of cells

switching from a low to a high H3K27me3 state that

generates a quantitative change in FLC expression (Fig.

2B). This switching, which occurs when plants are re-

turned to the warm, is enabled by quantitative cold-in-

duced accumulation of H3K27me3 in the nucleation

region of FLC that is then able to use the noisy histone

modification dynamics to flip the epigenetic state of the

whole locus to one predominantly covered by H3K27me3

(see Fig. 1C,D). The prediction of cell-autonomous re-

pression was a key output of mathematical modeling.

This prediction was subsequently verified experimentally

using an FLC:GUS reporter to monitor FLC expression

in individual cells of Arabidopsis roots (Fig. 2B) (Angel

et al. 2011), revealing a digital on/off pattern of gene

expression.

The digital nature of this histone-modification-based

memory allows the expression of FLC to remain stable

through many rounds of DNA replication because each

cell only has to sustain one of two possible epigenetic

states. The modeling and experimental work described in
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Figure 2. Key modeling principles and the quantitative nature of
the vernalization response. (A) Cooperative positive feedback.
Active histone modifications (green ovals) encourage further
active modifications to be added and repressive modifications
(red ovals) to be removed. Similarly, repressive modifications
encourage further repressive modifications and the removal of
active modifications. A requirement for two-step transitions, that
is first passing through the unmodified state, ensures nonlinear
cooperativity. (B) The quantitative nature of the vernalization
response is the result of an increasing number of cells switching
to a repressed state after an increasing period of cold exposure.
FLC expression in individual cells can be observed directly in
roots using an FLC:GUS reporter gene. In blue cells, FLC is
expressed, whereas in white cells, FLC is repressed. (Adapted
from Song et al. 2012.)
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Angel et al. (2011) shows that such a system can generate

quantitative changes in gene expression at the whole-or-

ganism level despite having only two stable expression

states in individual cells. If instead, however, each cell

were to individually remember a graded level of FLC

expression, the system would need a continuum of stable

states within individual cells. Such a graded memory

could potentially be much more difficult to sustain

because of disruption by fluctuations.

In the model of Angel et al. (2011), the memory of cold

exposure is directly encoded in the chromatin of FLC.

There is currently much discussion in the literature about

whether histone modifications are a fundamental memory

element capable of recruiting the machinery necessary

for the maintenance and heritability of epigenetic states

(Kaufman and Rando 2010). The vernalization model

does not provide the answer to this question but instead

analyzes the mechanistic features that a histone-modifi-

cation-based memory system requires to be capable of

generating stable alternative expression states that can

be switched in response to an environmental stimulus.

Interestingly, it has recently been suggested that Poly-

comb-mediated epigenetic memory through DNA repli-

cation may be mediated through persistent binding of

PcG/trxG proteins to the locus in question rather than

by the histone modifications themselves (Petruk et al.

2012). In this context, we note that a memory system

that relies on such enzyme binding would actually be

very similar in structure to the model of Angel et al.

(2011), with the activating/silencing histone modifi-

cations simply relabeled as the presence/absence of

activating/silencing proteins. Determining the actual na-

ture of the memory element(s), which could vary from

one system to another, is clearly a key aim for future

experiments.

EXAMPLE 2: MEIOTIC TELOMERE

DYNAMICS

Our second modeling example is concerned with the

spatiotemporal dynamics of meiosis. How genetic mate-

rial is passed on to the next generation is obviously a

crucial step in the life cycle of all organisms. This process

was revolutionized by the evolution of meiosis, in which

the number of chromosomes is halved in cells destined to

become gametes. However, meiosis necessarily intro-

duces many complications, not the least of which is the

necessity of pairing related (homologous) chromosomes

to ensure that each gamete receives the full haploid ge-

nome. Homologous pairing, about which relatively little

is known, poses many intriguing questions such as how

chromosomes search for their partners and how homol-

ogous chromosomes are able to recognize one another

while avoiding nonhomologous associations.

At first glance, the homologous chromosome search

seems to be an almost impossible task, whereby whole

chromosomes (each vastly larger than the size of a typical

protein) must navigate the entire nucleus in search of

their single unique partner (Moore and Shaw 2009).

Organisms tend to mitigate this problem by attaching

the telomeres to the nuclear membrane during meiosis.

With telomeres confined to the membrane, subtelomeric

regions have a much smaller region to search for their

homologous partners. In fact, many organisms go further

and move all of the telomeres to a small region on the

nuclear membrane, forming a chromosome configuration

called the telomere bouquet that potentially even further

reduces the search space (Zickler and Kleckner 1998;

Scherthan 2001, 2007; Harper et al. 2004).

FORMATION OF THE TELOMERE BOUQUET

How the telomere bouquet is formed has long been

mysterious, especially because the time for bouquet for-

mation is similar in many organisms, even those as

diverse as yeast and wheat. This is especially surprising

because wheat is a “worst-case-scenario” organism for

meiosis with more than 1000 times more DNA (17 Gb)

and more than eight times the nuclear radius (8 mm) com-

pared with yeast. Furthermore, bread wheat is hexaploid,

with three related, although nonhomologous, sets of chro-

mosomes. Hence, identification of the correct homolo-

gous pairs is potentially even more difficult owing to

the necessity of preventing incorrect pairings among

related but nonhomologous chromosomes. In this con-

text, the Ph1 locus, a region on chromosome 5B that

has been localized to a cluster of defective Cdk-like genes

(Greer et al. 2012), is of vital importance. It seems to have

evolved, at least in part, to help avoid these incorrect

nonhomologous pairs. Its mechanism of action is not

yet understood, although the initiation of bouquet forma-

tion seems to occur earlier in a mutant without Ph1

(Richards et al. 2012).

One possibility for telomere dynamics is a purely dif-

fusive process, in which telomeres diffuse along the nu-

clear membrane and “stick” together when they meet

other telomeres. However, it is also possible that telo-

meres are actively moved along the nuclear membrane.

Proteins that link chromosomes to cytoskeletal elements

have been discovered in many organisms (Scherthan

2007; Hiraoka and Dernburg 2009). These proteins, often

containing SUN/KASH domains, create a bridge from

chromosomes within the nucleus, through the nuclear

membrane, to motor proteins outside of the nucleus. As

these motor proteins walk along elements of the cytoskel-

eton, they drag the telomeres along the surface of the

nucleus. If the underlying cytoskeleton is ordered and

points in a consistent direction, directed motion results.

However, if the cytoskeleton is completely disordered, on

long enough length and timescales, an effective diffusion

process is generated, with an effective diffusion constant

that is potentially far larger than that generated by stan-

dard Brownian motion.

Mathematical modeling has again been vital in quan-

titatively assessing various different telomere-movement

models, testing their compatibility with the available

data, and making further predictions. Simulations of a

minimal pure diffusive model (potentially facilitated by
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random motor-driven motion along the cytoskeleton)

suggested that this would lead to large variations in the

total time for bouquet formation, essentially because of

the random nature of diffusive motion. Such large varia-

tions have not been observed experimentally (Fig. 3A)

(Carlton et al. 2003) and hence such a model is not

favored.

To better determine the relative parts played by diffu-

sion and directed motion, it is important to understand the

initial telomere configuration, that is, the arrangement of

telomeres after attachment to the nuclear membrane but

before bouquet formation has started. In many organisms,

telomeres are not initially distributed uniformly over the

nuclear surface but rather are preferentially found in a

hemisphere (Cowan et al. 2001). This may be related to

the Rabl configuration that is persistent in some organ-

isms during interphase, in which the centromeres and

telomeres occupy opposite sides of the nucleus. Further-

more, in the wheat-rye system that was studied by

Richards et al. (2012), and potentially in many other

organisms, it was found that this initial hemisphere

does not have a preferred orientation with respect to the

final bouquet site. This is a crucial difference to previ-

ous work in which it was found that if telomeres always

occupy the same initial hemisphere, pure directed motion

(without diffusion) cannot explain bouquet formation

because the variation in bouquet formation time has be-

come too small (Fig. 3B) (Carlton et al. 2003). For this

reason, it was previously proposed, based on simulations,

that it is a combination of directed motion and diffusion

that explains bouquet formation (Carlton et al. 2003).

However, once it was appreciated that telomeres

initially occupy random positions within a randomly ori-

ented hemisphere on the nuclear membrane, it was pos-

sible (Richards et al. 2012) to perform more realistic,

although still extremely minimal, spatiotemporal com-

puter simulations of bouquet formation. These simula-

tions included both directed motion and diffusion and

were compared to experimental measurements of telo-

mere dynamics taken from wheat-rye. This approach al-

lowed a reexamination of the relative effects of diffusion

and directed motion. Interestingly, such an analysis pre-

dicted that a model without any diffusion at all, in which

telomeres simply move directly toward the bouquet site,

could explain much of the data, including both the total

time for bouquet formation and the variation in this total

time (Fig. 3C). The variation in the time for bouquet

formation now originated from the random orientation

of the initial hemisphere with respect to the bouquet for-

mation site rather than from diffusion.

Although a directed motion model is useful for under-

standing the underlying mechanism of bouquet forma-

tion, it is perfectly possible that telomeres in reality do

not move directly toward the bouquet site. The cytoskel-

etal element responsible for telomere motion (be it mi-

crotubules, actin, or something else) may well point on

average toward the bouquet site but could have fluctua-

tions in this direction. By incorporating this variation into

the mathematical model, it was possible to predict the

size of the variations. The best fit to the experimental

data was found when the directionality of the cytoskele-

ton had a standard deviation of �40˚. This model is

similar to a case with directed motion toward the bouquet

site plus effective diffusion but now only in a transverse

direction (rather than the uniform diffusion considered

previously). Crucially, this result shows that bouquet for-

mation can proceed even with a relatively large variation

in the direction of motion (Richards et al. 2012), empha-

sizing the robustness of bouquet formation. This conclu-

sion underlines the importance of modeling in assessing

the robustness of particular mechanisms to the presence

of fluctuations.

CONCLUSIONS

In this chapter, we introduce and discuss two examples

in which minimal mathematical modeling has helped to

accelerate our understanding of the underlying biology.

We now place these efforts in a broader context, discuss-

ing the current and potential future role of mathematical

modeling in biology.

The modeling examples discussed previously were

tightly focused, dealing with the epigenetic regulation

of a particular developmental gene in Arabidopsis and

the spatiotemporal dynamics of telomere bouquet forma-

tion in wheat-rye. Both are complex biological systems

whose mode of action is far from clear and are there-

fore ideal candidates for mechanistic modeling. Indeed,

many biological systems, even those with relatively few

components, can give rise to unexpected behavior, that is

not straightforward to understand intuitively. Modeling

then comes into its own in rigorously showing whether

a particular network of interactions can give rise to the

observed behavior. Modeling of this sort can then ge-

nerate predictions for experimental testing and subse-

quent model refinement. Such focused modeling can be

contrasted with other computational approaches, such

Figure 3. Possible models of how telomeres move along the
nuclear membrane to form the bouquet. (A) Pure diffusion mod-
el with telomeres (green circles) randomly diffusing ( jagged
green arrows) on the nuclear membrane until they find the bou-
quet site. This model cannot explain bouquet formation because
the variation in total time for bouquet formation is too large.
This is true for any initial arrangement of telomeres. (B) Direct-
ed motion (straight arrows) model, but with the telomeres always
starting in the same hemisphere, cannot account for bouquet
formation because now the variation in bouquet formation
time is too small. (C ) The model preferred (Richards et al.
2012) involves telomeres undergoing directed motion (straight
arrows) that start from a randomly orientated hemisphere. Ex-
perimental data in wheat-rye directly support such a randomly
oriented initial configuration.
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as those involving bioinformatics. We define bioinfor-

matics here as the application of information sciences

to the analysis of biological data, often involving the

large-scale data generated in genomics and proteomics.

Bioinformatics has, of course, been a highly successful

methodology and clearly it overlaps to some extent with

mathematical modeling. However, bioinformatics is often

useful for discovering the components and interactions

within a particular network, rather than for the rigorous

dissection of how (or whether) the network can generate a

particular behavior. It is probably fair to say that most

experimental biologists are more comfortable dealing

with the more traditional bioinformatics methods (such

as sequence alignment) than with the less familiar tools

of mathematical modeling (such as differential equa-

tions). Modeling approaches can, however, inject entirely

new ways of thinking into biology, thereby accelerating

the discovery of fundamental mechanisms. We believe

that the two examples presented in this chapter provide

modest examples of this process. In our opinion, it is the

modeling approaches, currently under-represented in

biology compared to bioinformatics, that will increasing-

ly come to the fore during the next decade.

In addition to the difficulties faced by biologists in

adapting to the methodologies used by modelers, mathe-

matical modelers face equally significant challenges in

approaching biological problems. Regardless of their ex-

act origin, modelers (whether they are mathematicians,

physicists, engineers, or computer scientists) are typically

trained on clean, well-formulated problems. Moreover,

most of these problems, although often hard to solve,

were at least easy to state. Biology, of course, tends to

defy such precise formulations and is full of problems that

are frequently messy and often difficult to define clearly.

This makes much of the problem in biological modeling

actually one of setting up the problem in an appropriate

way. Once this is done, making progress is often relative-

ly simple. In principle, evolution should offer some in-

sight into model formulation. As has been elegantly

stated, “nothing in biology makes sense except in the light

of evolution.” Although undeniably true, whether such a

perspective is practically useful in a modeling context is

open to debate because it is often extremely difficult to

distinguish between two potential mechanisms based

purely on evolutionary arguments. Furthermore, whereas

in physical science Occam’s razor is a vital tool allowing

unnecessarily complex theories to be dismissed without

too much consideration, in biology its utility is much

diminished, owing to the complexity of the systems and

their evolutionary origin (Crick 1988).

At present, we must concede that the achievements of

the modeling field have often been rather limited and not

as impressive as some of its adherents would have us

believe. Cases in which modeling has led to genuine,

unexpected advances are still regrettably few in number,

although this is perhaps not entirely surprising given

that the modern era of modeling is relatively young. Nev-

ertheless, the use of modeling methodologies would

seem to offer one of the few compelling approaches to

tame the immense complexity of biology. By adopting a

systematic modular approach, we can hope to build up our

fundamental understanding, with most progress being

made on individual small-scale systems. Minimal, small-

scale mathematical models can be validated by focused

experiments and then periodically merged into large-

scale, comprehensive models able to probe the interac-

tions among many systems. In this way, by building out

from small-scale models, the difficulty of experimentally

constraining the inevitably large number of parameters of

large-scale models can at least be partly overcome. De-

spite recent pioneering efforts (Karr et al. 2012), compre-

hensive modeling of even the simplest bacterial cells

is probably years away from substantial completion. In

the short term, we believe that focused, small-scale ef-

forts at fusing modeling and experimental biology, such

as those detailed here, offer the best means to accelerate

our understanding of complex biology. Simply put, un-

derstanding biology is a daunting task and it would seem

wise to use all available tools to make the job a little

easier.
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