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SUMMARY
RNA concentration homeostasis involves coordinating RNA abundance and synthesis rates with cell size.
Here, we study this in human cells by combining genome-wide perturbations with quantitative single-cell
measurements. Despite relative ease in perturbing RNA synthesis, we find that RNA concentrations generally
remain highly constant. Perturbations that would be expected to increase nuclear mRNA levels, including
those targeting nuclearmRNAdegradation or export, result in downregulation of RNA synthesis. This is asso-
ciated with reduced abundance of transcription-associated proteins and protein states that are normally co-
ordinated with RNA production in single cells, including RNA polymerase II (RNA Pol II) itself. Acute pertur-
bations, elevation of nuclearmRNA levels, andmathematical modeling indicate thatmammalian cells achieve
robust mRNA concentration homeostasis by the mRNA-based negative feedback on transcriptional activity
in the nucleus. This ultimately acts to coordinate RNA Pol II abundance with nuclear mRNA degradation and
export rates and may underpin the scaling of mRNA abundance with cell size.
INTRODUCTION

As the template for protein production, mRNA concentration is

fundamental to cell physiology. While the number of transcripts

of a given gene per cell is variable between cells in a population

(Raj et al., 2008), much of this variability can be explained by cell

size variation—with larger cells containing more transcripts (Bat-

tich et al., 2015; Ietswaart et al., 2017; Kempe et al., 2015; Pado-

van-Merhar et al., 2015; Sun et al., 2020; Zhurinsky et al., 2010).

In fission yeast (Sun et al., 2020; Zhurinsky et al., 2010), plants

(Ietswaart et al., 2017), and mammalian cells (Padovan-Merhar

et al., 2015; Schmidt and Schibler, 1995), size scaling of mRNA

‘‘abundance’’ is achieved by size scaling of mRNA ‘‘production

rates.’’ The underlying mechanism is unclear; however, the pre-

dominant hypothesis is that cells contain a factor that is limiting

for transcription whose abundance is closely coupled to cell

size—leading to size scaling of transcript production from a fixed

amount of DNA template (Marguerat and B€ahler, 2012). In yeast,

it has been suggested that RNA polymerase II (RNA Pol II) itself is

a limiting factor for transcription (Sun et al., 2020; Swaffer et al.,

2021); however, it remains unclear how levels of RNA Pol II are

determined and maintained.

Studies in budding yeast have further shown that mRNA con-

centration homeostasis involves coupling of mRNA production

and degradation rates, so that perturbations to one are compen-
454 Cell Systems 13, 454–470, June 15, 2022 ª 2022 Elsevier Inc.
sated by changes to the other (referred to as ‘‘mRNA buffering’’)

(Haimovich et al., 2013; Sun et al., 2012, 2013). However, these

studies do not consider the effects of cell size changes, which

often occur upon disruption of global RNA metabolism (Jorgen-

sen et al., 2002; Maitra et al., 2018; Mena et al., 2017). Moreover,

unlike in human cells and fission yeast, budding yeast increases

RNA stability rather than RNAproduction ratewith increasing cell

size (Mena et al., 2017), indicating a different size-scaling mech-

anism. In mammalian cells, mRNA stabilization upon transcrip-

tional inhibition has also been reported (Helenius et al., 2011;

Slobodin et al., 2020), but both acceleration (Abernathy et al.,

2015; Gilbertson et al., 2018) and disruption (Lee et al., 2012;

Singh et al., 2019) of cytoplasmic RNA degradation have been

associated with transcriptional repression. Therefore, it remains

unclear to what extent RNA concentrations are robust to pertur-

bation in mammalian cells (Hartenian and Glaunsinger, 2019).

Since both size scaling and buffering contribute to RNA con-

centration homeostasis, they may be part of the same mecha-

nism, but whether this is the case and how this works is un-

known. To study these phenomena together, we here combine

genome-wide genetic perturbation screening with multiplexed

quantitative measurements of single cells. Crucially, this allows

us to account for perturbation-induced changes to cell size or

cell-cycle stage at the single-cell level and also enables us to

connect effects seen in perturbations with naturally varying
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properties of unperturbed cells. We uncover hundreds of pertur-

bations that affect global RNA synthesis rates in single cells,

including pathways not previously implicated in transcriptional

control. However, in most cases, we find that RNA concentration

is not disrupted. Systems-level analysis of the genes involved

together with detailed characterization of molecular phenotypes

at the single-cell level suggest a model in which transcription

rates are negatively regulated by nuclear mRNA concentration.

We propose that the activity, and ultimately abundance, of

RNA Pol II is determined by this mRNA-based feedback to

enable robust mRNA concentration homeostasis in human cells.

RESULTS

Cell size perturbation leads to precise adaptation of
mRNA abundance
In unperturbed human cells, mRNA abundance scales with cell

size (Figure S1A) (Battich et al., 2015; Kempe et al., 2015; Pado-

van-Merhar et al., 2015). To investigate if mRNA concentrations

are robustlymaintained upon cell volumeperturbation, we estab-

lished a method of cell volume measurement compatible with

high-throughput branched DNA (bDNA) single-molecule RNA

fluorescence in situ hybridization (smFISH) (Figures S1B–S1H;

STAR Methods) and measured cytoplasmic transcript abun-

dance for 14 size-scaling genes (Battich et al., 2013) in popula-

tions of HeLa cells. Cell size was perturbed using siRNA-medi-

ated knockdown of GRIP2 and SBF2 (Figure S1I), genes which

are not known to affect transcription but whose knockdowns

result in smaller and larger cells, respectively (Berchtold et al.,

2018) (VGRIP2 = 1:0 pL; VScrambled = 2:3 pL; VSBF2 = 4:9pL).

Average mRNA abundance was dramatically reduced in smaller

cells (GRIP2 RNAi) and increased in larger cells (SBF2 RNAi)

(Figures 1A, 1B, andS1J). However,mRNAabundance remained

proportional to cell volume (Figures S1J and S1K), and volume

still accounted for the majority of transcript abundance variation

formost genes (Figure 1C).Moreover,meanmRNAabundance in

perturbations, nPerturbed, was well predicted by the change in vol-

ume (nPerturbedznScrambledVPerturbed=VScrambled; Figure 1D) and

normalizing spot count by volume at the single-cell level often

led to overlapping distributions (Figures 1B and S1M). We also

measured total RNA abundance using RNA Strandbrite, a fluo-

rescent stain specific for RNA, as well as by total RNA extraction

and quantification (Figures S1N–S1P). Overall mRNA abundance

was measured by FISH against polyadenylated RNA (poly(A)

FISH). These different approaches all consistently showed that

changes to cell volume in GRIP2 or SBF2 perturbations were

associated with proportional changes in total RNA and mRNA

abundance (Figures S1N–S1Q). Cell volume is therefore a domi-

nant source of heterogeneity in mRNA abundance in cell popula-

tions, and its perturbation leads to precise adaptation of tran-

script abundance to maintain both global and gene-specific

mRNA concentration.

RNA production rates are coupled to cell cycle and cell
volume
RNA abundance is determined by its production and degrada-

tion rates. However, inferring gene-specific mRNA production

rates in single cells is technically challenging and often requires

assumptions (Ietswaart et al., 2017; Padovan-Merhar et al.,
2015; Sun et al., 2020). Because size scaling is a transcrip-

tome-wide phenomenon, wemeasured the rate of bulk RNA pro-

duction in single cells in situ using metabolic pulse labeling with

5-ethynyl uridine (EU) (Jao and Salic, 2008; Padovan-Merhar

et al., 2015; Shah et al., 2018) in combination with measurement

of cell volume and immunofluorescence to assign cells to G1/S/

G2 cell-cycle phases (Figures 1E, 1F, and S2A–S2J). In two cell

lines (HeLa and 184A1) and also in primary human keratinocytes,

EU incorporation increased close to proportionally with cell vol-

ume (Figure S2I), indicating that RNA production rates scale with

cell size, in agreement with previous results in fibroblasts (Pado-

van-Merhar et al., 2015). However, including cell-

cycle information revealed that G2- and S-phase cells showed

higher EU incorporation than G1 cells of the same volume

(Figures 1F and S2J). Furthermore, HeLa cells showed an addi-

tional increase during S phase (Pfeiffer and Tolmach, 1968)—

above the level seen in G2. While these cell-cycle effects

are interesting and suggest differences compared with yeast

(Voichek et al., 2016), we here focus on cell size scaling of EU

incorporation—using precise cell-cycle information to exclude

changes to DNA template abundance.

EU is incorporated into all major RNA species by RNA poly-

merases I, II, and III (Jao and Salic, 2008). To evaluate the contri-

bution of ribosomal RNA (rRNA) to EU incorporation, we treated

cells with the RNA Pol I inhibitor CX-5461 (Drygin et al., 2011),

which resulted in elimination of EU incorporation in the nucle-

olus—the site of rRNA transcription (Figures 1G, S2G, and

S2H). To quantify this, we segmented the nucleolus and nucleo-

plasm (non-nucleolus) and summed EU intensity in each region

separately (Figure S2L). CX-5461 reduced nucleolar EU by

89%–92% while the reduction in total nuclear EU was more

modest (46%–56%) (Figures 1H and S2M). Moreover, nucleolar

segmentation in untreated cells revealed that the nucleolus con-

tributes 45% of nuclear EU incorporation. Taken together, this

suggests that rRNA contributes approximately half of the EU

incorporation in nascent RNA. This is less than the contribution

of rRNA to total RNA abundance (80%; Wolf and Schlessinger,

1977) and is consistent with much greater stability of rRNA

than mRNA (estimated average half-life 3–8 days [Gillery et al.,

1995; Halle et al., 1997] and 3.5 h, respectively [Herzog et al.,

2017; Tani et al., 2012]). Cell volume and cell-cycle dependence

of total nuclear EU incorporation was similar between CX-5461-

treated and untreated cells (Figures 1G and S2K). Moreover, in

untreated cells, EU intensities in the nucleolus and nucleoplasm

were highly correlated and showed similar cell volume and cell-

cycle dependence (Figures 1I and 1J). Together, these data indi-

cate that the production rates of rRNA and other cellular RNA are

similarly coordinated with cell volume and cell-cycle stage.

To investigate if bulk RNA production is coordinated with

cellular growth rate, we grew HeLa cells in a low concentration

of the translation inhibitor cycloheximide, which reduces cell

growth rate and increases cell-cycle duration (Ginzberg et al.,

2018) (Figures S2N and S2O). However, we observed very little

change in EU incorporation (Figure S2P). To modulate cell vol-

ume, we treated HeLa cells with the cyclin-dependent kinase

(CDK) inhibitor roscovitine for 48 h (Cadart et al., 2018), which

led to an approximate doubling of cell volume in each cell-cycle

phase, without affecting the cell-cycle distribution (Figures S2Q

and S2R). In this case, EU incorporation increased approximately
Cell Systems 13, 454–470, June 15, 2022 455



Figure 1. RNA abundance and production rates scale with cell size
(A) Number of cytoplasmic HPRT1 transcripts detected by smFISH as a

function of cell volume, in cells transfected with scrambled siRNA (n = 1,315
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in proportion to cell volume changes. This indicates that RNApro-

duction rates in human cells are coordinated with cell volume

rather than cellular growth rate, in agreement with studies at

the cell-population level in fission yeast (Fraser and Nurse,

1979; Zhurinsky et al., 2010).

Finally, we tested whether scaling of mRNA abundance with

cell size is in part also achieved by decreasing mRNA degrada-

tion rates in larger cells. To study this, we estimated mRNA

degradation rates for 18 genes using smFISH after transcrip-

tional inhibition (Figure S3). In agreement with previous work in

human cells (Padovan-Merhar et al., 2015) and fission yeast

(Sun et al., 2020), we found that mRNA degradation rates were

not systematically lower in larger cells. This further supports a

model in which size scaling of mRNA abundance is caused by

size dependence of mRNA production rather than degradation.

Genetic perturbation screen reveals large changes in
RNA production rates
To investigate the genetic control of RNA production rates and

their coordination with cell size, we next applied this RNA meta-

bolic labeling assay in the context of an arrayed genome-wide

siRNA perturbation screen (Figure 2A) (M€uller et al., 2021). The

screen comprises spatially resolved multivariate measurements

of�80 million HeLa cells across 21,823 perturbations, providing

a comprehensive resource to perform systems-level analyses of

the regulation of RNA production as a function of cell size and

cell-cycle stage. Because cellular protein content and nuclear

area are both proportional to cell volume (Figure S1G) (Cantwell

and Nurse, 2019; Kafri et al., 2013), we used these as measures

of cell size in the screen.

Many perturbations led to increases or decreases in EU incor-

poration (Figure 2B), with changes often of a large magnitude

(mean EU fold-change percentiles P1 = 0:56 and P99 = 2:2)
cells), siRNA targeting GRIP2 (n = 1,413 cells), or SBF2 (n = 834 cells). DAPI

(blue) and HPRT1 smFISH (gray) for selected example cells.

(B) Single-cell spot count distribution for HPRT1, normalized by cell volume in

lower panel.

(C) R2 for linear regression predicting spot count from cell volume, for the

genes indicated. Either considering genetic perturbations separately (top) or

combined (bottom).

(D) Mean spot count predicted from the change in cell volume in perturbations.

Blue dashed line shows the expected fit given by the equation nperturbed =

nscrambledVperturbed=Vscrambled , black line shows the actual fit line obtained by

robust regression.

(E) Metabolic RNA labeling using EU to measure RNA production rates.

(F) EU incorporation in untreated cells during a 30 min pulse. Nucleolin (NCL)

immunofluorescence, EU, and DAPI inset. Quantification of single-cell sum

nuclear EU intensity as a function of cell volume, for different cell-cycle stages.

Data points show mean of cell volume bins with shaded regions showing ±

s.d.. Lines fit to single-cell data using robust regression, plotted for 2nd–98th

percentiles.

(G) As in (F), with 2 h CX-5461 pre-treatment.

(H) Sum EU intensity in subnuclear regions in CX-5461-treated (n = 2,600) and

untreated cells (n = 9,122). Boxplots summarize single-cell values with outliers

omitted for clarity. Values relative to median nuclear EU intensity of un-

treated cells.

(I) As in (F), for sum nucleolar and sum nucleoplasmic EU.

(J) Correlation of nucleolar and nucleoplasmic EU across cells, for either the

sum or the mean of pixel values. Boxplots summarize correlations observed in

individual replicate wells (n = 6). All data from HeLa cells. Scale bars, 25 mm.

See also Figures S1–S3.



Figure 2. Genetic screen identifies regulators of RNA production

(A) Arrayed genome-wide siRNA screen.

(B) Upper: example images of EU metabolic labeling from the screen. Lower: sum nuclear EU intensity as a function of cellular protein content, for each cell-

cycle phase.

(C) Perturbation-averaged sum nuclear EU as a function of number of interphase cells in the screen.

(D) Perturbation-averaged sum nuclear EU as a function of cellular protein content (G1 cells only).

(E) Mean residual EU across the screen for scrambled siRNA (n = 1,826), SLC25A3 (n = 664), and library siRNAs (n = 21,538). Gene perturbations ranked bymean

residual EU. Dotted and dashed lines indicate lower and upper hit thresholds (pposterior = 0:5; 0:85), respectively (M€uller et al., 2021).

(F) Network of functional annotations enriched in perturbations with increased or decreasedmean residual EU. Functional annotation enrichment score defined in

STAR Methods.

(legend continued on next page)
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(Figure S4A). While some perturbations were associated with

reduced viability, the general trend was weak (Figure 2C), in

agreement with our finding (Figures S2O and S2P) that perturb-

ing growth rates does not lead to characteristic changes in RNA

production. In contrast, perturbation-averaged EU incorporation

did correlate with cellular protein content across the screen (Fig-

ure 2D), showing that, across a genome-wide set of genetic per-

turbations, altered cell size typically leads to a coordinated

change in RNA production. Furthermore, this was observed at

the single-cell level within all perturbations (Figures S4E–S4G).

To systematically identify perturbations of EU incorporation,

we therefore derived a measure of EU intensity that is corrected

for cell size and cell-cycle stage at the single-cell level (STAR

Methods). We refer to this as ‘‘mean residual EU.’’ It is negative

for perturbations with reduced EU incorporation (n = 519 hits,

413 of which have >500 cells) and positive for those with

increased EU incorporation (n = 1,186 hits, 1,183 of which

have >500 cells) (Figure 2E). Mean residual EU hits are not asso-

ciated with characteristic cell-cycle distribution or cell size

changes (Figure S4C).

To reveal the functions of genes whose perturbation underlies

altered EU incorporation, we performed rank-based enrichment

analysis of functional annotations using mean residual EU

(STAR Methods). Enrichment scores were higher for ‘‘down’’

hits than ‘‘up’’ hits, suggesting that reduction in EU incorporation

occurs through disruption of amore focused (or better annotated)

set of pathways. As expected, ribosomal biogenesis (RNA Pol I),

as well as RNA-Pol-II- and Pol-III-dependent transcription were

strongly associated with reduced EU incorporation (Figure 2F).

However, nuclear RNA processing and splicing, chromatin orga-

nization, nuclear RNA export, and RNA degradation annotations

were also strongly enriched for reduced EU incorporation.

Closer examination of the genes underlying these annotations

(Figures 2G, S4H, and S5) revealed, for example, that enrichment

of the term ‘‘RNA degradation’’ for reduced EU incorporationwas

driven mostly by the ‘‘nuclear’’ rather than ‘‘cytoplasmic’’ RNA

degradation factors (Grudzien-Nogalska and Kiledjian, 2017;

qabno et al., 2016; Schmid and Jensen, 2018; Siwaszek et al.,

2014) (Figure S6A), especially the RNA exosome (a multi-compo-

nent 30 to 50 ribonuclease; Schmid and Jensen, 2018), and nu-

clear exosome targeting factors such as MTREX, ZFC3H1, and

TENT4B. Annotations enriched for increased EU incorporation

include the secretory pathway—specifically vesicle coating and

ER to Golgi anterograde transport (e.g., RAB1A, SEC16B, and

TRAPPC1), and also protein lipidation, especially genes involved

in GPI-anchor biosynthesis (e.g., PIGP and DPM3) (Figures S4H

and S5). These previously unreported phenotypes suggest

intriguing links between cell surface homeostasis and transcrip-

tional regulation. EU incorporation increases were also observed

upon perturbation of many sequence-specific DNA-binding pro-

teins, for example, NFX1/NFXL1 and ELK1, and also histone de-

methylases such as KDM2B (H3K4/K36-demethylase)

(Figures S4H and S5), indicating that individual transcription fac-
(G) STRING protein-protein association network of genes with RNA degradatio

pposterior > 0:5 and squares for pposterior > 0:85.

(H) Images of EU incorporation in the genome-wide screen for POLR1A or POLR

(I) Single-cell distributions of sum nucleoplasmic and nucleolar EU intensity (arbit

plates shown for comparison. Scale bars, 25 mm. See also Figures S4–S6.
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tors and histonemodifiers can also have strong repressive effects

on overall RNA synthesis.

Nucleolar and nucleoplasmic RNA production are highly coor-

dinated in single cells (see Figure 1I). Across the genome-wide

screen, we also observed a high correlation between perturba-

tion-averaged mean EU intensities in the nucleolus and nucleo-

plasm (r = 0:97), with sum EU intensities slightly less well corre-

lated (r = 0:86) (Figure S6B), due to changes in nucleolus size

(Boulon et al., 2010). This suggests that perturbations typically

have similar effects on ribosomal and non-ribosomal transcrip-

tion. Despite this general correspondence, however, we did

identify a subset of hits which specifically reduced nucleolar

but not nucleoplasmic EU, many of which were related to

RNA-Pol-I-dependent transcription (Figures S6C–S6J; STAR

Methods). At face value, this may be unsurprising; however,

we did not observe a converse nucleoplasm-specific EU reduc-

tion when targeting genes associated with RNA Pol II transcrip-

tion (Figure S6K). For example, POLR1A RNAi specifically

affected nucleolar EU while POLR2B RNAi affected both the

nucleolus and the nucleoplasm (Figures 2H and 2I). This is

consistent the role of RNA Pol II in promoting RNA-Pol-I-depen-

dent transcription (Abraham et al., 2020; Burger et al., 2013;

Caudron-Herger et al., 2016) and suggests that size scaling

of RNA-Pol-I-dependent transcription may occur as a conse-

quence of size scaling of RNA-Pol-II-dependent transcription.

RNA concentration is stable in perturbations with
altered RNA production
To determine how RNA abundance is affected in conditions in

which synthesis rates are perturbed, we measured mRNA abun-

dance using poly(A) FISH and total RNA abundance using RNA

Strandbrite (Figures 3A, S7A, and S7B) on a set of 436 gene per-

turbations. Perturbations were chosen from enriched annota-

tions in the genome-wide screen to maintain both functional

and phenotypic diversity (M€uller et al., 2021). Both mRNA and

total RNA abundance correlated with cellular protein content

across these 436 perturbations (Figure S7C) but were much

less strongly perturbed than EU intensities (Figures 3B and

S7D), implying that RNA concentration homeostasis is not

generally disrupted. For example, POLR2B and PABPC4 knock-

down resulted in a 5.7-fold reduction or 2.6-fold increase,

respectively, in EU incorporation relative to scrambled siRNA

controls, but both showed a 1.1- or 1.2-fold reduction in

mRNA abundance in the nucleus and cytoplasm, respectively

(Figure 3A). Moreover, the variability within cell populations

was also greater for EU incorporation than for protein, mRNA,

and total RNA abundance (Figures 3C and S7E–S7G).

To systematically identify changes in RNA abundance, we

first corrected for cell size and cell-cycle changes using linear

regression, which led to narrower distributions of perturbation-

averaged poly(A) FISH and RNA Strandbrite intensities, and

greater overlap with scrambled siRNA controls (Figures S7H

and S7I). This indicates that cell size and cell-cycle changes
n annotation. Conditions with low cell number omitted. Labeled circles for

2B knockdown.

rary units) for perturbations in (H). Three scrambled siRNA wells from the same



Figure 3. RNA concentration is stable in conditions with altered RNA production

(A) EU metabolic labeling and poly(A) FISH images for selected siRNA perturbations.

(B) Fold-change in perturbation-averaged mean nuclear and cytoplasmic intensities relative to scrambled siRNA controls. Scrambled siRNA (n = 80), library

siRNA (n = 415). Low cell number conditions omitted.

(C) Cell-to-cell variability (robust coefficient of variation) of mean nuclear and cytoplasmic intensities within each well, for data in (B).

(D) Pairwise correlations of mean residual RNA abundance measurements and EU across perturbations (n = 379).

(E) Mean residual EU versus mean residual nuclear poly(A) FISH. Mean of two replicates shown for each condition. Gray boxes indicate 1st/99th percentiles of

scrambled siRNA controls.

(F) As in (E), for cytoplasmic poly(A) FISH.

(G) Nuclear RNA exosome schematic. See also Figures S7–S9.
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explain some of the differences seen in RNA abundance. We

then compared these RNA abundance measurements with EU

incorporation across perturbations (Figures 3D–3F, S8A, and

S8B). Average total RNA and mRNA abundances were moder-

ately correlatedwith one another across perturbations; however,

there was a conspicuous lack of strong correlation of either with

EU (Figures 3D–3F and S8B–S8D). This implies that in human

cells, RNA degradation rates generally change in concert with

production rates, similar to budding yeast (Haimovich et al.,

2013; Sun et al., 2012). Notably, however, when we specifically

analyzed nuclear mRNA abundance, we did observe a small

number of perturbations that show reduced EU incorporation

and strong overaccumulation of mRNA in the nucleus

(Figures 3E and S8C), which we validated by RNA dot blot

(Figures S8E–S8J). This disruption of mRNA concentration ho-

meostasis occurs when targeting nuclear pore component

NUP93 or core components of the nuclear RNA exosome:

EXOSC3 and EXOSC5 (Fan et al., 2018; Silla et al., 2018), sug-

gesting critical roles for nuclear RNA degradation and export in

this process. In addition to nine core subunits (EXOSC1–

EXOSC9), the nuclear RNA exosome (Figure 3G) contains two

catalytic subunits: DIS3, which targets products of RNA Pol II
transcription, and EXOSC10, which plays a role in nucleolar

RNA processing (Davidson et al., 2019; Schmid and Jensen,

2018). Although perturbation of both EXOSC10 and DIS3

showed reduced EU incorporation in the genome-wide screen

(Figure 2G), their knockdown did not lead to increased nuclear

mRNA levels (Figure S8A), likely because of partial functional

redundancy between them (Davidson et al., 2019; Fan et al.,

2018; Tomecki et al., 2010).

To measure gene-specific cytoplasmic mRNA abundance, we

applied bDNA smFISH to detect transcripts for nine genes

across 50 genetic perturbations (Figures S9A–S9H). Perturba-

tions included RNA exosome and nuclear pore components,

transcription machinery and splicing factors, as well as diverse

perturbations with increased EU incorporation. Although genetic

perturbations often led to changes in gene-specific transcript

abundance, changes were not in a consistent direction for a

given perturbation (Figures S9C, S9D, and S9I), and transcript

abundance of specific genes was typically not correlated with

EU incorporation across perturbations (Figures S9J and S9K).

Moreover, mRNA abundance remained highly coordinated with

cellular protein content at the single-cell level (Figure S9E), indi-

cating maintenance of gene-specific mRNA concentration.
Cell Systems 13, 454–470, June 15, 2022 459
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Together, these data reveal that RNA concentrations are

generally robustly maintained in conditions with altered EU

incorporation, pointing to a generic coordination of RNA synthe-

sis and degradation in human cells. From the hundreds of condi-

tions studied, we identified only a few exceptions in whichmRNA

concentration homeostasis was strongly disrupted—specifically

in the nucleus. These perturbations involve core components of

the nuclear RNA exosome and nuclear pore (EXOSC3, EXOSC5,

and NUP93), and all show strong accumulation of nuclear poly(A)

FISH signal and reduced EU incorporation. Since perturbation

of nuclear mRNA processing and export are also associated

with reduced EU incorporation in the genome-wide screen,

this points to a mechanism by which cells downregulate RNA

synthesis in response to an inability to export or degrade nuclear

mRNA.

Characterization of molecular changes underpinning
perturbation of RNA production
The diverse set of genetic perturbations identified that affect

EU incorporation provide an opportunity to investigate how cells

globally regulate bulk RNA production. To determine how the

abundance of RNA Pol II and other proteins involved in RNA pro-

duction and processing are altered when RNA production rates

change, we quantified EU incorporation together with the abun-

dance and localization of 18 proteins or post-translational mod-

ifications (PTMs) in the same cells, using iterative indirect immu-

nofluorescence imaging (4i) (Figures 4A and 4B) (Gut et al.,

2018). The antibody panel includes markers of active promoters

(H3K4me3) and heterochromatin (H3K9me3), as well as RNA

Pol II (POLR2A, also known as RPB1) and its phosphorylated

forms: POLR2A-S5P and POLR2A-S2P, which are markers of

transcription initiation (Glover-Cutter et al., 2009) and elongation

(Peterlin and Price, 2006), respectively. We also measured nu-

clear speckles (SON) and speckle-associated proteins involved

in splicing (SNRPB2), RNA stability (PABPN1), and export

(ALYREF), as well as the nucleolus (NCL) and RNA Pol I

(POLR1A).

We selected 63 perturbations from the genome-wide screen,

focusing on gene perturbations in which mRNA concentration

homeostasis is perturbed (EXOSC3/5 and NUP93) as well as

other pathways enriched in the screen, including RNA process-

ing (U2AF1 and HNRNPK), transcription factors (NFXL1 and

ELK1), chromatin modification (SETD1A and CBX3), the endo-

membrane system (RAB1A and TRAPPC8) and GPI-anchor

biosynthesis (PIGC and PIGP). After validating 4i-based quanti-

fication of protein abundance in single cells (STAR Methods;

Figures S10A and S10B), we performed duplicate 4i experiments

in which we analyzed an average of 5,500 ± 2,500 cells (mean ±

s.d.) per perturbation, together with over 80,000 control cells

(Figures S10C–S10G). The abundance of most proteins

measured, including POLR1A and POLR2A, also positively

correlated with total cellular protein content in unperturbed cells

(Figures S10H and S10I).

To obtain an overview of howdifferent proteins and PTM levels

change in perturbations, we used hierarchical clustering of

perturbation-averaged mean intensities (which reflect concen-

trations), focusing on G1 cells (Figure 4C). This revealed diverse

molecular phenotype profiles, which clustered into groups with

characteristic EU incorporation. Notably, perturbation of four of
460 Cell Systems 13, 454–470, June 15, 2022
the five RNA exosome components (DIS3, EXOSC3, EXOSC5,

and MTREX—but not EXOSC10) clustered together, indicating

a common cellular phenotype. This ‘‘DIS3 phenotype’’ was char-

acterized by reduction in RNA Pol II concentration and other

components associated with active transcription (e.g., CDK7

and H3K4me3), together with increases in ALYREF and H2B.

The DIS3 phenotype differed from other conditions with reduced

EU incorporation, such as the disruption of components of

pre-mRNA processing machinery (e.g., HNRNPK, U2AF1, and

SNRPF), which showed greater reductions in cell viability, and

more extreme changes to cell morphology.

To determine which markers show concordant changes

across perturbations, we took perturbation-average mean inten-

sity values of each marker and calculated pairwise correlations

between them (Figure 4D). Clustering this correlation matrix re-

vealed 4 groups of markers. Foremost, we observed that EU

clustered with all three markers of RNA Pol II, revealing that

changes in EU incorporation induced by genetic perturbations

are most closely related to changes in RNA Pol II concentration

(Figure 4E). A second group contained markers associated with

‘‘active transcription’’ such as CDK7, CDK9, and H3K4me3,

which also correlated well with EU. A third group containing

H2B, H3K9me3, and ALYREF did not show a close relationship

with EU and was anti-correlated with PABPC4, which showed

distinct changes across perturbations compared with all other

markers, even PABPC1 (Figure 4D). Similar to the genome-

wide screen (Figure S6B), nucleolar and nucleoplasmic EU

incorporation were highly correlated across perturbations

(Figures S10J and S10K) and both showed similar correlations

with 4i markers to those seen for whole-nucleus EU (Fig-

ure S10L). To further investigate the link between RNA Pol II

abundance and EU incorporation, we corrected EU and

POLR2A intensities for cell-cycle and cell size effects (STAR

Methods). Residual EU and residual POLR2A were well corre-

lated across perturbations (r EU; POLR2A = 0:57; Figures 4F,

S11A, and S11B), and significant changes to one were associ-

ated with changes to the other (Figures 4H and 4I). To validate

this finding, we made use of MRC5 cells in which both copies

of POLR2A are tagged with GFP (Steurer et al., 2018). Imaging

POLR2A-GFP and EU across the same set of 63 perturbations

revealed a similar positive correlation (r EU; POLR2A�GFP = 0:65;

Figures 4G, S11C, and S11D), confirming that RNA Pol II abun-

dance typically changes together with transcriptional activity in

perturbations.

To visualize the multidimensional character of the measured

phenotypes in single cells, we embedded all 434,575 cells in

a 2D uniform manifold approximation and projection (UMAP)

(McInnes et al., 2018), using intensity and texture features

derived from 4i together with morphology and cell crowding fea-

tures (Figures 5A and 5B). Perturbations typically localized to

specific regions of the UMAP; however, almost all contained a

subpopulation that cannot be readily distinguished from scram-

bled siRNA controls (Figures 5C and S11E), likely corresponding

to non-perturbed cells. Although EU was omitted when con-

structing the UMAP, other features in the data led to a non-

random pattern of EU intensity, which is distinct from both cell

cycle and nuclear area (Figures 5B and S11F). We observed

two major axes of variability in the main body of the UMAP:

from bottom to top, nuclei become larger, and cell-cycle



Figure 4. Highly multiplexed profiling of cellular phenotypes associated with altered RNA production

(A) 4i schematic.

(B) Diagram of proteins and PTMs measured by 4i and their roles in RNA metabolism.

(C) Hierarchical clustering of mean intensities of 4i markers across 63 siRNA perturbations. Each marker standardized to non-perturbed (scrambled siRNA) cells

using the robust Z score before averaging replicates. G1 cells only. On-target indicates that siRNAs directly target a gene in the antibody panel. Row labels shown

in (D).

N indicates nuclear mean intensity while C indicates cytoplasmic mean intensity.

(D) Pairwise correlations between perturbation-averaged 4i marker intensities (the rows of C).

(E) Correlations of perturbation-averaged 4i marker intensities with EU by cell-cycle phase.

(F) Residual mean POLR2A versus residual mean EU for each well in the 4i experiment. Pearson’s correlation for non-controls inset. Gray shaded boxes represent

1st/99th percentile of scrambled siRNA controls.

(G) As in (F), for MRC5 POLR2A-GFP cells with POLR2A quantified using GFP intensity, across the same 63 perturbations (n = 3 per perturbation).

(H) 4i experiment: residual mean EU for perturbations in which POLR2A is increased/decreased compared with scrambled siRNA controls (Benjamini-Hochberg

adjusted p < 0.05).

(I) As in (F), with POLR2A and EU reversed.

(J) Example 4i images. See also Figures S10 and S11.
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progresses, while from left to right, POLR2A intensity increases

together with EU intensity, and other markers of active transcrip-

tion. Perturbations with increased EU incorporation, such

as TRAPPC8 and NFXL1, typically occupy this region with

increased intensity of active transcription markers (Figure 5C).
As expected, targeting one of the proteins in the antibody panel

whose intensities are used to create the UMAP (POLR1A,

PABPC4, XRN2, and POLR2B), led to perturbations in which

cells localized away from the main group of cells (Figure 5A).

Notably, RNA exosome perturbations localized to two distinct
Cell Systems 13, 454–470, June 15, 2022 461



Figure 5. Coordination of transcription machinery abundance with RNA production rates at the single-cell level

(A) UMAP of 434,575 HeLa cells generated from 4i marker intensities, excluding EU. Selected perturbations colored, with remaining cells gray. Labels indicate

predominant perturbations in each cluster.

(B) UMAP colored by cell cycle, nuclear area, or nuclear mean intensity of indicated marker.

(C) Distribution of cells on UMAP for selected perturbations.

(D) Pairwise correlations between 4i markers represented as a network, either calculated across perturbations or across unperturbed cell populations. G1

cells only.

(E) GFP fluorescence and EU metabolic labeling in MRC5 POLR2A-GFP cells.

(F) Coefficient of determination (R2) of linear regression predicting sum nuclear EU in MRC5 POLR2A-GFP cells at the single-cell level. Predictors indicated

on axis.

(G)R2 of linear regression predicting sum nuclear EU in HeLa cells, with 4i markers as predictors, as indicated. Univariate models have a single predictor, while ‘‘+

Cell cycle,’’ ‘‘+ Morphology,’’ and ‘‘All’’ indicate the additional predictors included (STAR Methods). See also Figures S11 and S12.
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clusters (Figure 5C), with DIS3 and MTREX primarily occupying

the lower cluster, and EXOSC3 and EXOSC5 occupying both.

The EXOSC3/5-specific cluster is distinguished from the other

by increased PABPN1 levels (nuclear poly(A)-binding protein)

and a less pronounced reduction in POLR2A (Figures S11F

and S12A), which may also be related to the increases in nuclear

mRNA that we saw using poly(A) FISH for EXOSC3/5, but not

MTREX/DIS3 (Figures 3A and S8A).

We noticed that the distribution of unperturbed (scrambled

siRNA) cells on the UMAP extended into regions typically occu-

piedbygenetically perturbed cells (Figures 5CandS11E). This in-

dicates that there is substantial cell-to-cell variability in levels of

measured proteins and PTMs even within unperturbed cell pop-

ulations. To understand how this heterogeneity is related to that

of RNA production rates in unperturbed controls, we calculated

correlations between mean intensities of 4i markers and EU

across single cells in these control populations. Several markers,
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including POLR2A, CDK7, and H3K4me3, were positively corre-

lated with EU (Figure S12B), indicating that abundance of RNA

Pol II and other active transcription markers in unperturbed pop-

ulations are coordinated with RNA production rates in single

cells. Interestingly, 4i markers that co-vary with EU in unper-

turbed populations are typically those that also showed concor-

dant changes with EU when the latter is perturbed. That is,

correlations r
ðunperturbed cellsÞ
x;EU and r

ðperturbation averageÞ
x;EU are themselves

positively correlated across 4i markers (r = 0.65, p < 10�7;

Figures S12C and S12D). Moreover, network representations of

these pairwise correlations calculated at the perturbation-scale

and the single-cell scale were highly similar (Figure 5D). At both

levels, we observed a module of active transcription markers

including CDK7, H3K4me3, POLR2A, and SNRPB2 that are

mutually coordinated and positively related to EU incorporation,

and a second set of factors including H2B, ALYREF, andNCL are

also mutually coordinated but are unrelated to EU incorporation.
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To determine the relationship between RNA Pol II abundance

and RNA production at the single-cell level, we combined EU

metabolic labeling with cell volume and cell-cycle measure-

ments in unperturbed MRC5 POLR2A-GFP cells. POLR2A-

GFP and EU intensities were highly correlated at the single-cell

level, and POLR2A-GFP showed a similar relationship as EU

with both cell volume and cell cycle (Figures 5E and S12E–

S12H). Furthermore, using linear regression, we found that

POLR2A-GFP intensity alone explained a similar fraction of vari-

ance in EU incorporation as a ‘‘cell size’’ model with cell volume

and protein content as predictors (mean R2 = 0:61 for both

models; Figure 5F). In the HeLa 4i dataset, regression models

predicting EU at the single-cell level from each 4i marker individ-

ually had R2 ranging from 0.02 for nuclear PABPC1 to 0.55 and

0.58 for POLR2A and H3K4me3, respectively, with latter values

similar to those of a morphology-only model (R2 = 0:55; Fig-

ure 5G). When combined with morphology and cell-cycle infor-

mation, POLR2A and H3K4me3 were the only two markers

which increased R2 compared with models with morphology

and cell-cycle features alone. Overall, this analysis indicates

that cells coordinate the cellular abundance of RNA Pol II and

other markers of active transcription with RNA production—

both in unperturbed cells and when RNA production is

perturbed.

Feedback regulation of RNA Pol II activity by
nuclear mRNA
Perturbation of the nuclear RNA exosome was a rare example in

which mRNA homeostasis is disrupted. In this case, nuclear

mRNA levels increase, and this is associated with reduced EU

incorporation and reduced levels of RNA Pol II and other markers

of active transcription (Figures S12I and S12J). This suggests

that nuclear mRNA abundancemay negatively feedback on tran-

scription to achieve mRNA concentration homeostasis. Such a

feedback could act to coordinate RNA production with nuclear

size, which is itself coupled to cell size (Cantwell and Nurse,

2019), and would be consistent with our genome-wide screen,

which revealed that nuclear (rather than cytoplasmic) RNA

degradation factors are associated with reduced EU incorpora-

tion (see Figure S6A). Moreover, in vitro work has shown that

mRNA is indeed inhibitory for transcription (Henninger et al.,

2021; Pai et al., 2014), so this may involve a direct effect.

To explore this hypothesis further, we developed a minimal

mathematical model incorporating RNA-Pol-II-mediated tran-

scription and nuclear mRNA. Our experimental observation

that transcriptional activity was closely associated with RNA

Pol II abundance across a functionally and phenotypically

diverse set of perturbations (see Figures 4F and 4G) indicates

that RNA Pol II abundance is often determined by transcriptional

activity rather than the other way around. Moreover, it is well

known that inhibiting transcription with ɑ-amanitin (Lee et al.,

2002; Mitsui and Sharp, 1999; Nguyen et al., 1996) or triptolide

(Alekseev et al., 2017; Bensaude, 2011; Steurer et al., 2018)

both lead to RNA Pol II degradation. Yet, when these com-

pounds are combined with proteasome inhibition, RNA Pol II de-

taches from chromatin but remains stable (Steurer et al., 2018).

These observations are consistent with RNAPol II being targeted

for degradation primarily when it is not chromatin associated. To

formulate this mathematically, we adapted a kinetic model of
RNA Pol II transcription derived from fluorescence recovery after

photobleaching (FRAP) (Steurer et al., 2018), adding the hypoth-

esis that only ‘‘unbound’’ RNA Pol II can be degraded (Figures 6A

and S13A; Table S1). Next, wemeasured POLR2A and POLR2A-

S2P levels using immunofluorescence, after treating cells with

triptolide or CDK9 inhibitor AZD4573 (which prevents Ser2-

phosphorylation of RNA Pol II CTD; Cidado et al., 2020) and opti-

mized a single free parameter (RNA Pol II synthesis rate) to

fit the data. The model quantitatively reproduced triptolide-

induced loss of POLR2A, and AZD4573-induced reductions of

POLR2A-S2P and POLR2A (Figures 6B and S13B). In contrast,

an alternative model in which all RNA Pol II species were subject

to degradation did not showRNA Pol II abundance changes. Us-

ing this model as a foundation, we next implemented feedback

from nuclearmRNA as either a stimulation of RNA Pol II degrada-

tion, or inhibition of RNA Pol II initiation, pausing, or pause

release. As expected, including this feedback made RNA Pol II

levels dependent on nuclear RNA degradation and export rates

(Figure 6C).

To test the model, we experimentally examined the timescale

of transcriptional adaptation upon disruption of nuclear RNA

degradation, using acute depletion of catalytic exosome sub-

units DIS3 or EXOSC10 in HCT116 cells (Davidson et al., 2019)

with the auxin-induced degron (AID) system (Nishimura et al.,

2009) (Figures 6D, 6E, and S14A–S14F). In both cases, auxin

addition resulted in reduced EU incorporation—with the stron-

gest effects for DIS3. EU reduction was evident from 60 min on-

ward and decreased progressively at later time points. For DIS3,

we found that EU reduction was accompanied by accumulation

of nuclear mRNA over the same timescale (Figure 6E). EXOSC10

did not accumulate mRNA (Figure S14D), consistent with its

direct targets being non-polyadenylated nucleolar RNA (David-

son et al., 2019). To determine whether rapid DIS3 depletion

is associated with changes in RNA Pol II, we measured

POLR2A, POLR2A-S5P, and POLR2A-S2P by immunofluores-

cence (Figures 6F and S14G). After 3.5 h of auxin treatment,

we observed a �40% reduction in EU incorporation, which

was accompanied by a �20% reduction in POLR2A-S2P, a

�10% reduction in POLR2A-S5P and a �6% reduction in total

POLR2A. DIS3 depletion therefore initially leads to reduced

RNAPol II activity, with reduction in RNAPol II abundance occur-

ring over a longer timescale (see Figures 4C and 4J). We next

compared these experimental results with mathematical models

in which the transcriptional feedback acts at different stages of

the transcription cycle. When mRNA activates RNA Pol II degra-

dation or represses initiation or pausing, the model predicts

simultaneous loss of phosphorylated and total POLR2A

(Figures 6G and S13C). Conversely, when mRNA represses the

transition from pausing to elongation, the model predicts greater

loss of POLR2A-S2P than POLR2A-S5P and total POLR2A.

Although the differences between RNA Pol II phosphorylation

states predicted by the model are small, this latter model is

most similar to experimental observations upon DIS3 depletion,

suggesting that nuclear mRNA abundance regulates transcrip-

tional activity downstream of transcription initiation.

As a second test of the negative feedback of nuclear RNA con-

centration on transcription, we made use of artificial arginine-

enriched mixed-charge domain (R-MCD) proteins, which were

recently found to drive nuclear mRNA retention (Greig et al.,
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Figure 6. Feedback regulation of RNA polymerase II activity by nuclear mRNA

(A) Minimal mathematical model of RNA Pol II transcriptional states. Arrows to/from B indicate RNA Pol II degradation/synthesis.

(B) Nuclear POLR2A and POLR2A-S2P levels relative to DMSO controls, measured by immunofluorescence upon chemical perturbation of transcription. Error

bars represent mean ± s.d. for all pairwise comparisons of treated (n R 2) and control wells (n = 6). Best-fit models shown for comparison.

(C) Steady-state levels of POLR2A and RNA when nuclear RNA degradation rate is reduced (4-fold), for the models indicated in legend.

(D) Poly(A) FISH and EU incorporation (20 min pulse) in DIS3-AID cells after 140 min Auxin or EtOH.

(E) Single-cell intensity distributions of mean nuclear poly(A) FISH and nuclear EU in DIS3-AID cells after auxin/EtOH treatment for the indicated durations. EU

pulse for final 20 min before fixation.

(F) Single-cell intensity distributions of mean nuclear EU and POLR2A (immunofluorescence) in DIS3-AID cells treated with Auxin or EtOH for 3.5 h. Inset: pop-

ulation median for auxin relative to EtOH controls (mean ± s.d., n = 6 [IF] or n = 18 [EU] wells).

(G) Model simulation of DIS3-AID depletion experiment for models including negative feedback from RNA, as indicated in schematics above. Best-fit models

shown with poly(A) FISH data from (E) and RNA Pol II immunofluorescence data from (F). All error bars represent mean ± s.d. for all pairwise comparisons of

treated and control wells. See also Figures S13 and S14.
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2020). When expressed in cells, positively charged R-MCD+0.1-

mGFP and R-MCD+0.2-mGFP localized to nuclear speckles,

leading to dose- and charge-dependent nuclear accumulation

and cytoplasmic depletion of mRNA—in line with previous data

(Greig et al., 2020) (Figures 7A, 7B, S15A, and S15B). Total

cellular mRNA abundance was not affected. In agreement with

our model, nuclear mRNA retention was accompanied by
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reduced EU incorporation (Figure 7B). Moreover, EU reduction

and nuclear mRNA accumulation showed similar quantitative

dependence on R-MCD levels (GFP intensity). In addition, nu-

clear mRNA retention driven by R-MCD+0.2-eGFP expression

was associated with reduced POLR2A and POLR2A-S2P—

most prominently at the highest GFP intensities (Figures 7C,

7D, and S15C–S15F).



Figure 7. NuclearmRNA retention leads to transcriptional repression

(A) GFP, poly(A) FISH and EU incorporation in cells expressing R-MCD+0.2-

GFP or GFP control. GFP-expressing cells outlined.
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Thus, elevating nuclear mRNA abundance by either acutely

disrupting nuclear RNA degradation or forcing nuclear mRNA

retention leads to reduced RNA synthesis. Because exosome

depletion initially affects transcriptional activity, with RNA Pol II

abundance changes occurring over longer timescales, this sug-

gests that RNA Pol II abundance is dictated by transcriptional

activity, rather than determining it. Moreover, since R-MCD

expression results in cytoplasmic depletion of mRNA, this con-

firms observations from the genome-wide screen that nuclear

rather than cytoplasmic RNA abundance is relevant for the

reduction of RNA synthesis. Further analysis of the model re-

vealed that negative feedback from mRNA makes steady-state

concentrations of RNA Pol II and nuclear mRNA less sensitive

to changes in parameters such as RNA Pol II synthesis and

degradation (Figures S13D and S13E) and also allows faster

restoration of RNA Pol II and mRNA concentration homeostasis

upon perturbation of cell volume (Figures S13F and S13G)—

increasing the robustness of mRNA concentration homeostasis

in fluctuating environments.
DISCUSSION

Here, we developed a technique for simultaneous measurement

of cell volume, cell-cycle stage, and bulk RNA production rates in

single cells, which reveals the relationships between these three

variables in asynchronous unperturbed human cells. In agree-

ment with earlier work in fission yeast (Fraser and Nurse, 1979;

Zhurinsky et al., 2010), we found that cell size changes in chem-

ical or genetic perturbations were generally associated with cor-

responding changes to RNA production rates (Figures 2D, S2Q,

and S2R), whereas reduced cell growth rates did not generally

lead to reduced RNA production rates (Figures 2C and S2N–

S2P). By measuring cell cycle, cell size, and EU incorporation

simultaneously in single cells, we were able to derive a perturba-

tion-level measurement of RNA production that is ‘‘corrected’’

for changes to cell size and cell-cycle stage (residual mean

EU). Previous studies of mRNA buffering in budding yeast were

normalized by cell number rather than cell size (Haimovich

et al., 2013; Sun et al., 2012, 2013) and are thus insensitive to in-

direct effects of perturbation-induced cell size changes on the ki-

netics of RNA metabolism. Given that perturbation of transcrip-

tion or RNA degradation is often associated with extreme cell

size changes in budding yeast (Jorgensen et al., 2002; Maitra

et al., 2018), studying these two phenomena together is crucial

to resolving the underlying mechanisms (Mena et al., 2017). As

we show, this can be achieved by combining perturbations
(B) Mean poly(A) FISH intensity for the cell, cytoplasm, or nucleus, together

with nuclear EU as a function of binned nuclear GFP intensity (GFP: n = 23,927,

>715 per bin; R-MCD+0.2-GFP: n = 6,296, >290 per bin). Points and shaded

regions show mean ± s.d.

(C) As in (B), for mean nuclear POLR2A (GFP: n = 6,442, >175 per bin;

R-MCD+0.2-GFP: n = 1,225, >51 per bin).

(D) As in (B), for mean nuclear POLR2A-S2P (GFP: n = 5,167, >123 per bin;

R-MCD+0.2-GFP: n = 1,346, >61 per bin).

(E) Schematic of the proposed mechanism. Cell size increase relieves

repression on transcription through transient mRNA dilution, allowing stabili-

zation of RNA Pol II and coordinated increase in RNA synthesis rate with cell

size. See also Figure S15.
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with quantitative multivariate measurements of single cells at the

population scale. The datasets generated here will therefore be

valuable resources for further investigating the interplay between

cell size and transcription rates, and how this is impacted by the

diverse molecular processes that we identified as having func-

tional roles in maintaining normal levels of cellular RNA

production.

Using highly multiplexed immunofluorescence, we found

that transcription rates are positively correlated with RNA Pol II

abundance and other hallmarks of RNA production including

H3K4me3, CDK7, and SNRPB2. However, both long-term and

acute perturbation experiments show that this coordination is

not because RNA Pol II abundance directly determines tran-

scription rates but because RNA Pol II abundance is adapted

to transcriptional activity. Rather, our experiments and modeling

point to nuclearmRNA concentration as being the quantity under

strict homeostatic regulation and reveal that this negatively im-

pinges on transcriptional activity to ultimately determine the

abundance of the transcription machinery. In contrast to the

‘‘limiting factor’’ model of transcriptional scaling (Lin and Amir,

2018; Marguerat and B€ahler, 2012; Padovan-Merhar et al.,

2015; Sun et al., 2020; Swaffer et al., 2021), this mechanism

has a strong parallel with classic ‘‘feedback inhibition’’—em-

ployed pervasively throughout metabolic networks to coordinate

activities of biosynthetic enzymes with cellular requirements

(Pardee and Reddy, 2003). Feedback inhibition through allo-

steric effects is more robust than control of enzyme abundance

(Sander et al., 2019), which is analogous to mRNA acting primar-

ily on transcriptional activity rather than on RNA Pol II abun-

dance, as suggested by fitting the model to the DIS3-AID exper-

iments. Importantly, the mRNA feedback model is not in conflict

with recent findings in budding yeast that overexpression or

depletion of RNA Pol II changes the amount of RNA Pol II asso-

ciated with chromatin (Swaffer et al., 2021). These perturbations

alter the ratio between RNA Pol II and nuclear mRNA and would

override the homeostatic mechanism through which nuclear

RNA controls RNA Pol II levels. To further test this model, it will

be important to resolve the molecular mechanisms controlling

RNA Pol II abundance, and to determine how these are impacted

by nuclear mRNA concentration. Microinjection of exogenous

RNA, more extensive quantitative control of nuclear and cyto-

plasmic RNA nuclease activity, acute perturbations of cell and

nuclear volume, and live cell imaging of RNA Pol II kinetics will

be useful approaches to elucidate this.

The mechanism proposed here for mammalian cells contrasts

the buffering model proposed for budding yeast, which was

based on the finding that deletion of cytoplasmic RNA degrada-

tion factors, especially Xrn1, results in reduced transcription

(Haimovich et al., 2013; Sun et al., 2013). While we also find

that cytoplasmic RNA concentration is buffered upon genetic

perturbation of transcription, multiple observations indicate a

crucial role for the nucleus in this process: First, the genome-

wide screen reveals that perturbation of nuclear rather that cyto-

plasmic RNA degradation factors impact transcription

(Figures 2G and S5A). Second, only upon perturbation of nuclear

RNA degradation and export is homeostasis of mRNA concen-

tration broken (Figure 3E). Third, nuclear RNA retention experi-

ments indicate that nuclear rather than cytoplasmic RNA is rele-

vant for the homeostatic feedback on transcription (Figures 6H
466 Cell Systems 13, 454–470, June 15, 2022
and 6I). This is also consistent with reports that accelerated cyto-

plasmic mRNA degradation does not result in a compensatory

increase in transcription in human cells (Abernathy et al., 2015;

Gilbertson et al., 2018). Interestingly, recent work in fission yeast

also suggests that nuclear size rather than cell size may be the

quantitative determinant of mRNA size scaling (Sun et al., 2020).

The detailed mechanism by which mRNA concentration regu-

lates RNA production remains to be characterized. A direct ef-

fect is possible. Indeed, in vitro transcription is inhibited by exog-

enous RNA. This has been proposed to occur by RNA directly

interfering with RNA Pol II binding to the DNA template (Pai

et al., 2014) and could involve interference with the phase sepa-

ration of transcriptional condensates on chromatin (Henninger

et al., 2021; Portz and Shorter, 2021). An indirect effect is also

possible: with mRNA modulating the activity or localization of a

limiting transcriptional regulator. Nuclear RNA concentration

has been proposed to regulate condensation of nuclear RNA-

binding proteins (Maharana et al., 2018), and, interestingly, nu-

clear speckles are enriched for transcription elongation factors,

rather than transcription initiation factors (Galganski et al.,

2017). It is therefore possible that increased mRNA levels in nu-

clear speckles, for example, as observed upon R-MCD overex-

pression, could result in retention of elongation factors and

thereby suppress efficient RNA Pol II elongation.

The minimal model developed here explains several experi-

mental observations and ‘‘buffers’’ mRNA concentration. How-

ever, in its current form, it does not achieve robust ‘‘set point’’ ho-

meostasis (Briat et al., 2016; Reed et al., 2017). Further

elaboration of the model requires more details on the molecular

nature of the transcriptional feedback, and on howmRNA degra-

dation and export rates are affected by mRNA abundance.

For example, nuclear mRNA export in human cells appears to

depend on ongoing transcription (Tokunaga et al., 2006), which

could also contribute to themaintenance of nuclear mRNA levels

that we observed in perturbations with strong transcriptional

repression, such as POLR2B knockdown. In addition, work in

budding yeast has revealed that blocking nuclear export can

lead to increased degradation of newly synthesized mRNA (Tu-

dek et al., 2018). Such mechanisms could both play key roles in

set-point homeostasis of nuclear mRNA concentration, but it is

currently unclear how they are interconnected. The rich perturba-

tion datasets and simple model that emerge from our work, link-

ing activity and abundance of the transcription machinery to nu-

clear mRNA concentration, provide a starting point to explore

links between these global cellular controls of mRNAmetabolism

and how they relate to the volume of mammalian cells.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-ALYREF Santa Cruz Biotechnology Cat#sc-32311; Clone#11G5; Lot#G1517;

RRID: AB_626667

Mouse monoclonal anti-CDK7 Santa Cruz Biotechnology Cat#sc-7344; Clone#C-4; Lot#L011;

RRID: AB_627243

Rabbit monoclonal anti-CDK9 Cell Signaling Technology Cat#2316; Clone#C12F7; Lot#7; RRID:

AB_2291505

Chicken polyclonal anti-H2B Abcam Cat#ab134211; RRID: AB_2889048

Rabbit polyclonal anti-H3K4me3 Abcam Cat#ab8580; Lot#GR3190162-1; RRID:

AB_306649

Rabbit polyclonal anti-H3K9me3 Abcam Cat#ab8898; RRID: AB_306848

Rabbit polyclonal anti-NCL (C23) Santa Cruz Biotechnology Cat#sc-13057;

Lot#G3114; RRID: AB_2229696

Mouse monoclonal anti-PABPC1 Santa Cruz Biotechnology Cat#sc-32318; Clone#10E10;

Lot#D1913; RRID: AB_628097

Rabbit polyclonal anti-PABPC4 Atlas Antibodies Cat#HPA027301; RRID: AB_2672208

Rabbit monoclonal anti-PABPN1 Abcam Cat#ab75855; Clone#EP3000Y;

Lot#GR3202568-6;

RRID: AB_1310538

Rabbit monoclonal anti-PCNA Cell Signaling Technology Cat#13110; Clone#D3H8P; Lot#4;

RRID: AB_2636979

Mouse monoclonal anti-POLR1A (RPA194) Santa Cruz Biotechnology Cat#sc-48385; Clone#C-1; RRID:

AB_675814

Mouse monoclonal anti-POLR2A (RPB1) Santa Cruz Biotechnology Cat#sc-55492;

Clone#F-12;

Lot#C0119; RRID: AB_630203

Rat monoclonal anti-POLR2A-S2P Millipore Cat#04-1571; Clone#3E10;

Lot#3169853; RRID: AB_10627998

Rat monoclonal anti-POLR2A-S5P Millipore Cat#04-1572; Clone#3E8;

RRID:AB_10615822

Rabbit polyclonal anti-SON Atlas Antibodies Cat#HPA023535;

RRID: AB_1857362

Mouse monoclonal anti-SNRPB2 (U2 Bʺ) Laboratory of David Spector

(Habets et al., 1985)

Clone#4G3; RRID: N/A

Rabbit polyclonal anti-XRN2 Atlas Antibodies Cat#HPA047118; RRID:AB_2679941

Goat polyclonal anti-Mouse IgG (H&L), Alexa Fluor 488 Thermo-Fisher Cat#A11029; RRID: AB_138404

Goat polyclonal anti-Rabbit IgG (H&L), Alexa Fluor 568 Thermo-Fisher Cat#A11036; RRID:AB_10563566

Goat polyclonal anti-Chicken IgY (H&L), Alexa Fluor 405 Abcam Cat#ab175674; RRID:AB_2890171

Goat polyclonal anti-Rabbit IgG (H&L), Alexa Fluor 488 Thermo-Fisher Cat#A11034; RRID: AB_2576217

Goat polyclonal anti-Mouse IgG (H&L), Alexa Fluor 568 Thermo-Fisher Cat#A11031; RRID: AB_144696

Goat polyclonal anti-Rat IgG (H&L), Alexa Fluor 568 Thermo-Fisher Cat#A11077; RRID: AB_141874

Mouse monoclonal anti-mini-AID-tag MBL International Cat# M214-3, RRID:AB_2890014

Mouse polyclonal anti-DIS3 Abnova Cat#H00022894-B01P; RRID:AB_10562157

Rabbit monoclonal anti-Actin Abcam Cat#ab179467; RRID:AB_2737344

Horse anti-Mouse IgG (H&L), HRP Cell Signaling Technology Cat#7076; RRID:AB_330924

Goat anti-Rabbit IgG (H&L), HRP Bio-Rad Cat#1721019; RRID:AB_11125143

Biological Samples

Human: Primary Foreskin Keratinocytes Laboratory of Ernst Reichmann https://www.uniskingrafts.uzh.ch/en.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Alexa Fluor 488 Azide Thermo-Fisher Cat#A10266

Alexa Fluor 647 Azide Thermo-Fisher Cat#A10277

Alexa Fluor 488 NHS Ester Thermo-Fisher Cat#A20000

Alexa Fluor 647 NHS Ester Thermo-Fisher Cat#A20006

Sodium ascorbate Sigma-Aldrich Cat#A7631

Copper sulfate Sigma-Aldrich Cat#7758-98-7

5-ethynyl uridine (5-EU) Baseclick Gmbh Cat#BCN-003

DAPI (4’,6-diamidino-2-phenylindole, dihydrochloride) Thermo-Fisher Cat#D1306

Dextran, Alexa Fluor 488; 10,000 MW, Anionic, Fixable Thermo-Fisher Cat#D22910

FluoSpheres NeutrAvidin-Labeled Microspheres,

0.04 mm, red fluorescent (580/605)

Thermo-Fisher Cat#F8770

EZ-Link Sulfo-NHS-LC-Biotin Thermo-Fisher Cat#21335

Auxin (IAA) Sigma-Aldrich Cat#I3750

Triptolide Adipogen Life Sciences Cat#AG-CN2-0448

AZD4573 Selleckchem Cat#S8719

CX-5461 Axon Medchem Cat#2173

Roscovitine Santa Cruz Biotechnology Cat#sc-24002

Cycloheximide Sigma-Aldrich Cat#C7698

Epidermal growth factor (EGF) Sigma-Aldrich Cat#01-107

Insulin Sigma-Aldrich Cat#I1882

Hydrocortisone Sigma-Aldrich Cat#H0888

Cholera toxin Sigma-Aldrich Cat#C8052

Fibronectin Sigma-Aldrich Cat#F0895

Fetal bovine serum Sigma-Aldrich Cat#F7524

Horse serum Gibco Cat#16050122

DMEM, high glucose GIbco Cat#41965062

DMEM/F12 Gibco Cat#11330032

OptiMEM Reduced Serum Medium Gibco Cat#31985070

CnT-57 media CELLnTEC Cat#CnT-57

Penicillin/Streptomycin Gibco Cat#15140122

Lipofectamine RNAimax transfection reagent Invitrogen Cat#13778150

Lipofectamine 2000 Invitrogen Cat#11668030

16% Paraformaldehyde Electron Microscopy Sciences Cat#EMS-15710

Intercept blocking buffer Li-Cor Cat#927-70001

Bovine serum albumin Abcam Cat#ab7475

Triton X-100 Sigma-Aldrich Cat#T8787

Rat tail collagen I Gibco Cat#A1048301

RNAse A Roche Cat#10109142001

Formamide Ambion Cat#AM9342

20X SSC (saline sodium citrate), RNAse-free Sigma-Aldrich Cat#SRE0068

Dextran sulfate sodium salt Sigma-Aldrich Cat#D8906

ULTRAhyb�-Oligo Invitrogen Cat#AM8663

SDS, 20% Solution, RNase-free Invitrogen Cat#AM9820

RNaseOUT� Recombinant RNase Inhibitor Invitrogen Cat#10777-019

SuperScript� III Reverse Transcriptase Invitrogen Cat#18080044

SYBR� Select Master Mix Applied Biosystems Cat#4472903

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Cell Navigator Live Cell RNA Imaging Kit

(Strandbrite RNA Green)

AAT Bioquest Cat#22630

ViewRNA high-content screening assay kit Affymetrix Cat#QVP0011

ViewRNA Type 1 signal amplification kit 488nm Affymetrix Cat#QVP0202

ViewRNA Type 1 signal amplification kit 550nm Affymetrix Cat#QVP0202

ViewRNA Type 6 signal amplification kit 650nm Affymetrix Cat#QVP0202

ViewRNA Type 10 signal amplification kit 488nm Affymetrix Cat#QVP0202

Amersham ECL Western Blotting Detection Reagent Cytiva (Merck) Cat#RPN2109

Chemiluminescent Nucleic Acid Detection Module Kit Thermo Scientific Cat#89880

Deposited Data

Genome-wide siRNA screen images, single-cell

feature values and summaries

M€uller et al. (2021); This paper;

Image Data Resource (IDR)

idr0093; http://doi.org/10.17867/10000157

Secondary siRNA screen (EU) single-cell feature

values and summaries

This paper; Mendeley Data https://doi.org/10.17632/3v4bkmg92x.1

Secondary siRNA screen (Poly(A)-FISH / RNA StrandBrite)

single-cell feature values and summaries

This paper; Mendeley Data https://doi.org/10.17632/yfx32prktv.1

Tertiary siRNA screen (4i) single-cell feature values

and summaries

This paper; Mendeley Data https://doi.org/10.17632/w3bhntjwp6.1

Experimental Models: Cell Lines

Human: HeLa, cervical cancer cell line (single-cell clone) Battich et al. (2015) Kyoto

Human: 184A1, breast epithelial cell line (single-cell clone) Kramer and Pelkmans (2019) ATCC CRL-8798

Human: HCT116:TIR1 Steven West (Eaton et al., 2018) N/A

Human: HCT116:TIR1 XRN2-AID Steven West (Eaton et al., 2018) N/A

Human: HCT116:TIR1 DIS3-AID Steven West (Davidson et al., 2019) N/A

Human: HCT116:TIR1 EXOSC10-AID Steven West (Davidson et al., 2019) N/A

Human: MRC5 Jurgen Marteijn (Steurer et al., 2018) N/A

Human: MRC5 RPB1-GFP Jurgen Marteijn (Steurer et al., 2018) N/A

Oligonucleotides

siRNA Silencer Select Human Genome Wide Library V4 Thermo-Fisher Cat#4397926

siRNA targeting sequences against selected human

genes; Ambion Silencer Select

Thermo-Fisher see Deposited Data

Negative control siRNA #1; Ambion Silencer Select Thermo-Fisher Cat#4390843

siRNA targeting KIF11; Ambion Silencer Select Thermo-Fisher Cat#s7902

siRNAs targeting PIM2; Ambion Silencer Select Thermo-Fisher Cat#s21749, s21750, s21751

siRNAs targeting SLC25A3; Ambion Silencer Select Thermo-Fisher Cat#s10427, s10428, s10429

siRNAs targeting NUDT4; Ambion Silencer Select Thermo-Fisher Cat#s22020, s22021, s22022

siRNAs targeting SBF2; Ambion Silencer Select Thermo-Fisher Cat#s37818, s37819, s37820

siRNAs targeting GRIP2; Ambion Silencer Select Thermo-Fisher Cat#s37445, s37446, s37447

siRNAs targeting LRRK2; Ambion Silencer Select Thermo-Fisher Cat#s42413, s42414, s42415

siRNAs targeting EXOSC3; Ambion Silencer Select Thermo-Fisher Cat#s27229, s27230, s27231

siRNAs targeting EXOSC5; Ambion Silencer Select Thermo-Fisher Cat#s224433, s32381, s32382

Poly(A) FISH probe: dT-30-Cy5 Microsynth AG N/A

Poly(A) FISH probe: dT-30-Atto488 Microsynth AG N/A

Type 1 ViewRNA FISH probes: COL4A1 Thermo-Fisher Cat#VA1-10870-VC

Type 10 ViewRNA FISH probes: CSPG4 Thermo-Fisher Cat#VA10-11247-VC

Type 1 ViewRNA FISH probes: CTCF Thermo-Fisher Cat#VA1-12430-VC

Type 1 ViewRNA FISH probes: DAB2 Thermo-Fisher Cat#VA1-12305-VC

Type 1 ViewRNA FISH probes: EGFR Thermo-Fisher Cat#VA1-11736-VC

Type 1 ViewRNA FISH probes: EP300 Thermo-Fisher Cat#VA1-12301-VC

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Type 1 ViewRNA FISH probes: EZR Thermo-Fisher Cat#VA1-12203-VC

Type 6 ViewRNA FISH probes: GLS Thermo-Fisher Cat#VA6-10620-VC

Type 1 ViewRNA FISH probes: HPRT1 Thermo-Fisher Cat#VA1-11124-VC

Type 6 ViewRNA FISH probes: HPRT1 Thermo-Fisher Cat#VA6-13194-VC

Type 10 ViewRNA FISH probes: HPRT1 Thermo-Fisher Cat#VA10-10498-VC

Type 10 ViewRNA FISH probes: NCOA4 Thermo-Fisher Cat#VA10-10779-VC

Type 1 ViewRNA FISH probes: PFKL Thermo-Fisher Cat#VA1-12251-VC

Type 1 ViewRNA FISH probes: RAB11FIP3 Thermo-Fisher Cat#VA1-12035-VC

Type 6 ViewRNA FISH probes: RELA Thermo-Fisher Cat#VA6-3168253-VC

Type 1 ViewRNA FISH probes: RHEB Thermo-Fisher Cat#VA1-12093-VC

Type 1 ViewRNA FISH probes: SERPINB5 Thermo-Fisher Cat#VA1-12247-VC

Type 1 ViewRNA FISH probes: STX6 Thermo-Fisher Cat#VA1-12085-VC

Type 10 ViewRNA FISH probes: TERF2IP Thermo-Fisher Cat#VA10-10772-VC

Type 1 ViewRNA FISH probes: VCL Thermo-Fisher Cat#VA1-12204-VC

Type 1 ViewRNA FISH probes: dapB Thermo-Fisher Cat#VF1-11712-VC

Type 6 ViewRNA FISH probes: dapB Thermo-Fisher Cat#VF6-10407-VC

Biotinylated Oligo(dT) Probe Promega Cat#Z5261

Primers for RT-qPCR, see Table S2 Microsynth AG N/A

Recombinant DNA

pmEGFP-N1 Greig et al. (2020) N/A

pmEGFP-N1 R-MCD0.1 Greig et al. (2020) N/A

pmEGFP-N1 R-MCD0.2 Greig et al. (2020) N/A

Software and Algorithms

TissueMAPS v0.6.0 N/A https://github.com/pelkmanslab/

TissueMAPS

Ilastik v1.3 Sommer et al. (2011) https://www.ilastik.org/

Rstudio v1.2 RStudio Team (2020) https://rstudio.com/

R v3.6.3 R Core Team (2021) https://www.R-project.org/

Cellpose Stringer et al. (2021) http://www.cellpose.org/

Popcon This paper; from (Snijder et al., 2012) https://github.com/scottberry/popcon

Cytoscape Shannon et al. (2003) https://cytoscape.org/

Other

FluoroDish, 35mm World Precision Instruments Cat#FD35

RTV615 Clear FDA Potting Silicone; Momentive Techsil Cat#MOSI17098

384-well mClear plates Greiner Bio-One Cat#781092

96-well mClear plates Greiner Bio-One Cat#655097
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lucas

Pelkmans (lucas.pelkmans@mls.uzh.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Image data, single-cell level feature data and summary data for the genome-wide screen have been deposited at the Image

Data Resource (IDR) under accession number idr00093, and are described in an accompanying manuscript (M€uller et al.,

2021). Single-cell-level features and summaries for other genetic perturbation experiments are provided at the locations listed

in key resources table. Raw image datasets for other experiments are available upon reasonable request.
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d Image analysis was performed using TissueMAPS, an open-source project for high-throughput image analysis developed in our

group.All analysismodules, includingcodewritten for this paper, is packaged togetherwith themain repository at https://github.

com/pelkmanslab/TissueMAPS (https://doi.org/10.5281/zenodo.6468707). An example analysis pipeline description with

module files containing parameter settings for the genome-wide screen is provided at IDR (idr00093). This example is a typical

TissueMAPSworkflow, however the exact modules used and parameter values differ depending on experiments. These can be

provided on request. Code for calculating population-context features was written in python based on previous MATLAB code

from our group (Snijder et al., 2012) and is available at https://github.com/scottberry/popcon (https://doi.org/10.5281/zenodo.

6468575) R code for the analysis of single-cell data derived from images was developed on a per-experiment basis and is avail-

able on request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions
HeLa Kyoto (female) cell populations were derived from a single-cell clone and were tested for identity by karyotyping (Battich et al.,

2015). HeLa cells were cultured in high glucose DMEM supplemented with 10% fetal bovine serum (FBS) and 1% GlutaMAX. Cells

with low passage number (2-6) were used for all experiments.

184A1 (human female breast epithelial) cell populations were derived from a single-cell clone, and were used at low passage num-

ber (2-6) for all experiments. 184A1 cells were cultured in DMEM/F12media supplemented with 5% horse serum, 20ng/ml epidermal

growth factor, 10mg/ml insulin, 0.5mg/ml hydrocortisone, 10ng/ml cholera toxin.

Keratinocytes were donated by a healthy 2.5-year-old male (Biedermann et al., 2010), isolated and kindly provided by E. Reich-

mann and L. Pontiggia (University of Zurich, Zurich). Keratinocytes were cultured in CnT-57 medium (CELLnTEC) supplemented

at 1:100 (v/v) with Penicillin/Streptomycin. For propagation and experiments, plastic cell culture plates were coated with rat-tail

collagen I, according to manufacturer’s instructions. Experimental plates were prepared 5 days after thawing cells (passage 1).

Parental MRC-5 and derived POLR2A-GFP (RPB1-eGFP) cells (Steurer et al., 2018) were cultured in DMEM/F12 supplemented

with 10% FBS and 1:100 (v/v) Penicillin/Streptomycin.

Parental HCT116:TIR1 and derived EXOSC10-AID, DIS3-AID, XRN2-AID cells (Davidson et al., 2019; Eaton et al., 2018) were

cultured in DMEM supplemented with 10% FCS and 1:100 (v/v) Penicillin/Streptomycin. All cells were tested for absence of myco-

plasma before use and grown at 37�C, 95% humidity and 5% CO2.

Unless otherwise specified, cells were grown and imaged in uncoated Greiner mClear plastic-bottom 96- or 384-well plates.

METHOD DETAILS

siRNA transfection
Transfection with siRNA was performed as previously described (Berchtold et al., 2018). Briefly, 900 HeLa or 1500 MRC5 POLR2A-

GFP cells were plated per well in 384-well plates for reverse transfection onto a mixture of pooled siRNAs (5 nM final concentration)

and Lipofectamine RNAiMAX (0.08ml per well in OptiMEM) according to manufacturer’s specifications. Cells were subsequently

grown for 72 hours at 37�C in a final volume of 50mL growth media, to establish efficient knockdown of the targeted genes. For

the genome-wide and secondary screens, siRNAs were dispensed in a much lower volume using an acoustic dispenser, and assays

were performed in a final volume of 40mL. A detailed protocol was described previously (M€uller et al., 2021).

The genome-wide screenwas performed using a pool of 3 siRNAs (Ambion) targeting each gene. 21538 siRNA pools were assayed

across 83 384-well plates, as previously described (M€uller et al., 2021). The secondary library (EU metabolic labelling, poly(A) FISH,

RNA Strandbrite) employed the same siRNA pools for 436 gene perturbations. Secondary assays were performed in duplicate. The

tertiary library (4i, smFISH) consisted of a set of 63 perturbations, mostly from the secondary library. Gene lists and other metadata

are provided together with the experimental results at the locations listed in key resources table.

Plasmid transfection
2700 HeLa cells were plated in each well of a 384-well plate. 12 hours after seeding, 50ng plasmid was transfected per well using

Lipofectamine 2000, according to manufacturer’s protocol. Cells were then incubated for 2 hours at 37�C and then washed three

times into fresh media to remove unbound transfection reagent/plasmid complexes. Cells were subsequently grown for 48 hours

at 37�C before fixation, staining and imaging.

Chemical treatments
RNA polymerase I inhibitor, CX-5461 (Drygin et al., 2011) was dissolved in 5mNHCl at a concentration of 5mMand used at 2mM. XPB

(TFIIH) inhibitor triptolide (Titov et al., 2011) was dissolved in DMSO at a concentration of 10mM and used at 2mM. CDK9 inhibitor

AZD4573 (Cidado et al., 2020) was dissolved in DMSO at a concentration of 10mM and used at 0.1mM. CDK inhibitor roscovitine
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was dissolved in DMSO to a final concentration of 10mM and used at 20mM. Cycloheximide was dissolved in H20 to a concentration

of 40mM and used at 1mM. Auxin was dissolved in ethanol at 200mMand used at 0.5mM. Durations of chemical treatments vary, and

are noted throughout the text and figure legends.

Image acquisition
Unless otherwise specified, all imaging was performed an automated spinning-disk microscope (CellVoyager 7000, Yokogawa),

which is equipped with four excitation lasers (405, 488, 568, 647nm) and two Neo sCMOS cameras (Andor). For cell volume mea-

surement and smFISH experiments, a 40X/NA0.95 air objective was used. For other experiments such as the genome-wide screen,

secondary screen, poly(A) FISH, RNA Strandbrite, 4i, and R-MCD-GFP experiments, a 20X/NA0.75 objective was used. Certain ex-

amples images (e.g., Figure 1D) were acquired with a 60X/NA1.27 objective. With the exceptions of cell volume experiments and 3D

smFISH, images were maximum-projected during acquisition. Images presented in the same figure for the same stain were always

identically rescaled.

DNA and protein staining
Nuclear DNA was stained using 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI) for 5-10 minutes at a final concentration of

0.4mg/mL in phosphate buffered saline (PBS). Total protein was stained using Alexa Fluor 488 NHS Ester or Alexa Fluor 647 NHS

Ester (succinimidyl ester) for 10 minutes at a final concentration of 0.2mg/mL in 50mM carbonate-bicarbonate buffer pH 9.2.

High-throughput cell volume measurement
To measure cell volume in fixed cell populations, we attached fluorescent beads to the upper surface of cells, and also the slide sur-

face (Figure S1B). We then determine the three-dimensional positions of these beads using spinning-disk confocal microscopy and

use these to generate a computational reconstruction of the cell.

All staining and washing steps were performed either manually, or on a semi-automated liquid handling platform (BioTek) using the

following method: cells were fixed with 4% PFA for 30 min and washed four times with phosphate-buffered saline (PBS). To avoid

beads entering inside cells, we performed biotinylation and bead attachment before cell permeabilization. To biotinylate cell surface,

EZ-Link Sulfo-NHS-LC-Biotin was freshly dissolved in PBS and added to cells at a final concentration of 0.25mg/mL for 5 min. Cells

were then washed four times with PBS. To prepare beads for attachment, we diluted 40nm-diameter streptavidin-coated fluorescent

beads (Fluospheres) into a buffer containing 0.5x PBS and 0.01% Triton X-100, to a concentration of 0.005% solids (1/200 from 1%

stock). Beads were then dispersed by sonication in 1mL aliquots for 3 x 30 s in a Bioruptor water-bath sonicator (Agilent), and were

then added to cells by adding an equal volume of bead suspension to the residual PBS in multiwell plates (final bead concentration

0.0025% solids). Bead suspensions were mixed in the wells by pipetting up and down, or brief vigorous shaking of plates and were

then incubated at room temperature for 10 min before washing off unbound beads with PBS. Cells were then permeabilised before

proceeding with other stains.

After additional staining, beads were imaged as a separate acquisition (excitation laser: 568nm, emission filter 590/20 nm) using a

40X/NA0.95 (air) or 60X/NA1.27 (water immersion) objective on a spinning-disk microscope (CellVoyager 7000, Yokogawa), equip-

ped with sCMOS cameras (0.1625mm or 0.10833 mm pixel dimensions, for 40X/60X objectives, respectively). Approximately 60

confocal Z-slices were obtained per imaging site with step sizes of 0.25mm or 0.33mm. Calculation of cell volume from bead images

is described in quantification and statistical analysis.

Fluorescence exclusion method (FXm)
FXm was performed as previously described (Cadart et al., 2017). Briefly, a PDMS chamber with height 21.8mmwas prepared using

an epoxy mould provided by L. Venkova and M. Piel (Institut Curie, Paris, France). The chamber was then attached to a 35mm

FluoroDish using plasma treatment, and internal surfaces were coatedwith 50ug/mL human fibronectin for 1 hour at 37�C. Chambers

were then incubated in cell growth media overnight, and washed once more with growth media. Cells were then trypsinised and

loaded as a suspension into the FXm chamber. After allowing cells to adhere for 4 hours, media was replaced with fresh media con-

taining 1mg/mL Dextran-Alexa Fluor 488 (10,000MW). FXmmeasurements were then performed on live cells at 37�C, 5%CO2 using

an epifluorescence microscope (VisiTIRF, Visitron) with a 20X/0.4NA objective lens (Nikon). Fluorescently labelled dextran was

excited with 450-490nm (SOLA lightengine) and emission collected from 500-550nm. Data analysis was performed using custom

software as previously described (Cadart et al., 2017). For comparison with cell volume reconstruction method, cells were fixed in

the chamber using 4% PFA and bead attachment was performed manually, as described above. Chamber-level overviews were

derived by computationally stitching images frombothmethods, and the same single cells were identified in both datasets by aligning

these overviews.

Single-molecule RNA fluorescent in situ hybridisation (smFISH)
Single-molecule FISH was performed as previously described (Battich et al., 2013), using ViewRNA high-content screening assay kit

(Affymetrix) with Type 1 (Figure 1) or Type 1, 6, and 10 (Figure S9) primary probes and signal amplification kits (Affymetrix). Samples

were imaged on a spinning-disk microscope using a 40X/NA0.95 air objective with step-size of 1.0mm. Computational identification

of spots was performed in 3D (Figure 1, with cell volumemeasurement), or in 2D frommaximum-projected images (Figure S9, genetic

perturbation screen), as previously described (Stoeger et al., 2015).
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For smFISH experiments in the (tertiary) genetic perturbation screen (Figure S9), we focused on nine genes (RHEB, STX6, CTCF,

GLS,RELA,HPRT1,CSPG4,NCOA4, TERF2IP). These genes are expressed throughout the cell cycle, encompass diverse biological

functions, and have a range of estimated mRNA half-lives (2.3h to >24h (Tani et al., 2012)). They were also previously shown to have

cytoplasmic mRNA abundance that scales with cell size (Figures 1A–1D and S1J–S1L) (Battich et al., 2015). The genes targeted by

siRNA in this experiment are shown in Figure S9E. Only one of the nine genes (HPRT1) had mean mRNA abundance that correlated

with EU incorporation across perturbations (Figures S9J and S9K). HPRT1 was typically down-regulated in perturbation conditions

with reduced EU and up-regulated in perturbations with increased EU – a trend consistent with its biological function in nucleotide

metabolism.

In situ metabolic labelling of nascent RNA
Nascent RNA was visualised using metabolic labelling as previously described (Jao and Salic, 2008), with modifications. Briefly,

adherent cells were cultured in complete media at 37�C, 5% CO2 for 2-3 days. 5-ethynyl uridine (EU) was then dissolved to a con-

centration of 2mM in pre-warmed complete media. EU was added to cells by partially aspirating growth media and dispensing an

equal volume of 2mM EU using a BioTek washer-dispenser (e.g. 30mL 2mM EU added to 30mL residual for 384-well plates: final

EU concentration = 1mM). Cells were then incubated for 20 or 30 min at 37�C, 5% CO2, before fixation with 4% PFA at room tem-

perature for 20-30 min. After fixation, cells were permeabilised with 0.5% Triton X-100 and washed 3 times with TBS (50mM Tris pH

8.0, 150mM NaCl).

To render nascent RNA fluorescent, we prepared sufficient volume of click reaction master mix for all wells on a plate at 1.5x con-

centration, as follows: 75mM Alexa Fluor 488 azide or Alexa Fluor 647 azide, 3mM CuSO4, 150mM Sodium ascorbate, in TBS. Click

reaction was dispensed using a BioTek washer-dispenser and incubated for 30min at room temperature before washing cells 3x into

PBS. The click reaction is detrimental to the intensity of several fluorophores including the fluorescent beads used for cell volume

measurement and also GFP. To combine these with EU metabolic RNA labelling, we fixed, permeabilised and imaged either GFP

or beads before click reaction. Images were subsequently aligned using the DAPI channel, which was included in both imaging

rounds, using the computational procedure described previously for 4i (Gut et al., 2018).

Immunofluorescence and iterative indirect immunofluorescence imaging (4i)
For PCNA staining in non-4i immunofluorescence experiments, and for the genome-wide screen, cells were blocked with 1%BSA in

PBS for 1 hour and then incubated for 2 hours with rabbit anti-PCNA antibody dissolved in 1% BSA in PBS. RNA Pol II immunoflu-

orescence in non-4i immunofluorescence experiments was performed using Intercept blocking buffer (LI-COR Biosciences) for

blocking and antibody incubations.

Immunofluorescence-based quantification in combination with in situ RNAmetabolic labelling across multiple imaging cycles was

validated using MRC5 POLR2A-GFP cells (Steurer et al., 2018). We first pulsed cells with EU, then fixed and imaged GFP and DAPI.

Subsequently, we performed click reaction and POLR2A immunofluorescence and then re-imaged. Images from the two rounds

were aligned to the DAPI channel, using the computational procedure described previously for 4i (Gut et al., 2018). We then quan-

titatively compared POLR2A immunofluorescence with GFP intensity (Figures S10A and S10B): IF and GFP were highly correlated

(r = 0:92) and both showed similar partial correlation with EU (rx;EUj nuclear area of 0.49 and 0.46, respectively).

4i was performed as previously described (Gut et al., 2018) with two modifications: Intercept blocking buffer (LI-COR Biosciences)

was used for all blocking, primary and secondary antibody incubations, and 50mM HEPES was included in imaging buffer – which

was adjusted to a pH of 7.4. Before 4i experiments, all antibodies were tested for compatibility with elution buffer using the following

criteria: similar staining on normal and elution-buffer treated cells, minimal residual signal after elution and re-staining with secondary

antibody. After 4i, we also validated that agreement between replicates was high (Figure S10E) and that the technical variability be-

tween control (scrambled siRNA) wells was much less than the differences induced by the perturbations (Figure S10F). To ensure

successful antibody elution in each cycle, we included elution controls in each imaging cycle. This consists of re-probing a test

well with a secondary antibody in the imaging cycle after it was stained with primary and secondary antibody and imaged. Efficient

elution was verified in all cases.

Poly(A) RNA fluorescent in situ hybridisation (FISH)
Poly(A) FISH was adapted from published smFISH protocols (Raj et al., 2008) for high-throughput liquid handling. Briefly, cells were

fixed for 15 min in 4% paraformaldehyde, permeabilised in 0.2% Triton X-100 for 15 min (secondary screen) or 70% EtOH for 1 hour

(HCT116 experiments). If required, click reaction was then performed before applying FISH probes. Cells were then washed into 2X

saline sodium citrate buffer (SSC) containing 10% (v/v) formamide. Before hybridisation, samples were transferred to hybridisation

buffer (2X SSC, 10% (v/v) formamide, 100mg/mL dextran sulfate), and pre-incubated for 1 hour at 37�C. Fluorescently labelled DNA

oligonucleotide probes, dT(30)-Atto488 or dT(30)-Cy5, were purchased fromMicrosynth as labelled and HPLC-purified. These were

diluted into the hybridisation buffer and applied to cells at a final concentration of 400nM. After 16 hours at 37�C in a rotating incu-

bator, cells were washed into 2X SSC, 10% formamide, incubated again at 37�C for 1 hour, before washing into 2X SSC. For

combining with subsequent immunofluorescence, poly(A) FISH was imaged before immunostaining. Images were aligned using

the DAPI channel, which was included in both imaging rounds, using the computational procedure described previously for 4i

(Gut et al., 2018).
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Strandbrite total RNA staining
RNA Strandbrite was used according to manufacturer’s instructions. We confirmed that RNA Strandbrite staining is specific for RNA

by incubating cells with 0.5mg/mL RNAse A at 37�C for 30 min (Figure S1N). We also confirmed that RNA Strandbrite staining is pro-

portional to RNA abundance measured by extracting and quantifying RNA from a fixed number of cells (Figures S1O and S1P). RNA

Strandbrite green is spectrally distinct from poly(A) FISH when using Cy5-labelled oligo(dT) probes, so the two assays were com-

bined. However, during protocol optimisation, we found that RNA Strandbrite staining was not stable during the poly(A) FISH proto-

col, showing an altered localisation pattern and reduced signal intensity after FISH. However, poly(A) FISH was not affected by prior

RNA Strandbrite staining. To combine the two assays, we therefore performed RNA Strandbrite staining and imaging before poly(A)

FISH. Images were aligned using the DAPI channel, which was included in both imaging rounds, using the computational procedure

described previously for 4i (Gut et al., 2018).

RNA extraction and quantification
Cells were grown in 24-well plates and collected using 0.05%Trypsin-EDTA 72h after reverse transfection, using the same siRNA and

RNAimax concentrations as in screening assays. Trypsinised cells were resuspended in DMEM and counted on CASY cell counter

(OLS OMNI Life Sciences GmbH). Equal number of cells for all knockdown conditions and scrambled siRNA controls were pelleted

for RNA extraction. Total RNA extraction was performed with Quick-RNAMicroPrep Kit (Zymo Research Europe GmbH). On-column

DNase I treatment was performed to prevent genomic DNA contamination. RNA was resuspended in DNAse/RNAse-Free water and

the concentration of all samples measured by UV absorbance on Nanodrop (Thermo Fisher Scientific). RNA purity was checked by

measuring A260/A280 & A260/A230 > 1.8. Experiments were performed in triplicate.

Quantitative reverse transcription PCR (RT-qPCR)
50ng total RNA was used for cDNA synthesis using SuperScript� III Reverse Transcriptase, following manufacturer’s specifications.

A pool of all reverse PCRprimers was used for cDNA synthesis. RT-qPCRwas performed in 96-well plates using SYBR�SelectMas-

ter Mix on a QuantStudio 3 Real-Time PCR System (Applied Biosystems). The following conditions were used: 50�C for 2 minutes,

95�C for 2minutes, followed by 50 cycles at 95�C for 15 seconds and 60�C for 1minute. 3 independent experiments were performed.

All primers for RT-qPCRwere designed using PrimerBLAST (Ye et al., 2012) (Table S2). They were designed so that one primer of the

pair spans a splice site, so they should not amplify genomic DNA. As expected, reverse transcription reactions without reverse tran-

scriptase enzyme did not generally lead to successful amplification in qPCR. In a few cases amplification was detected, however

because it occurred more than 10 cycles after the corresponding cDNA sample, the effect on quantification was negligible.

RNA dot blot
RNA samples quantified using UV absorbance (Nanodrop) and then diluted in DNAse/RNAse-free water to achieve 5, 10 and 20 ng of

total RNA in 3 mL total volume per tube. All samples were incubated at 95�C in a heat block for 3 min to disrupt secondary structures

followed by immediately cooling in ice for 3 minutes. 3 mL of RNA was blotted onto the Hybond�-N+ hybridization membranes

(RPN203B, Cytiva) and cross-linked using a UV crosslinker (Stratagene Stratalinker) at 120,000 microjoules/cm2. To test specificity

for RNA, anRNA sample from scrambled siRNA control cells was treatedwith RNAse A for 5mins at room temperature before heating

to 95�C and adding RNaseOUT Recombinant RNase Inhibitor. After UV crosslinking, blots were prehybridized in ULTRAhyb�-Oligo

hybridization buffer for 30minutes at 42�C, followed by overnight incubation at 37�Cwith biotinylated Oligo(dT) probe in hybridization

buffer. Oligo-dT probe stock (50pmol/ml) was diluted 1:10,000 in the hybridization buffer before adding to the blot. Blots were then

washed thrice for 30mins each at 42�Cwithwash buffer containing 2xSSC and 0.5%SDS, followed by 2washeswith 2x SSC at room

temperature for 15 mins each. Signal was revealed using Chemiluminescent Nucleic Acid Detection Module Kit according to manu-

facturer specifications. Images were adjusted for contrast using ImageJ. Three independent experiments were performed.

Immunoblotting
HCT116-AID tagged cell lines were grown in 6 well culture dishes (TPP, Switzerland). Cells were treated with Auxin (dissolved in

ethanol) or ethanol carrier control for one hour. Cells were washed thrice with ice-cold PBS before adding lysis Buffer (150 mM

NaCl, 50 mM HEPES, 1% Triton X-100, 0.1% SDS, 2 mM DTT, 5 mM EDTA and 2X protease inhibitor cocktail dissolved in Milli-Q

H2O). Next, cells were lysed by scraping using cell scraper, followed by four rounds of passing through anOmnican Insulin-50 syringe

(Braun, Switzerland). Lysates were incubated for 15 min on ice and then centrifuged at 21,000g for 15 min at 4 �C. The supernatant

was collected and the proteins in the lysates were denatured by the addition of 2X loading buffer and boiling at 90 �C for 10 min.

Proteins were resolved by 4-20% Mini-Protean TGX protein gel (Bio-Rad) gel and transferred onto a polyvinylidene difluoride

(PVDF) membrane (Immobilon-P, 0.45 mm, Millipore) using Trans-blot transfer system (Bio-Rad). Membranes were blocked with

blocking buffer comprising of 5% low-fat milk in 13 PBS-T (13 PBS with 0.1% Tween-20) for 1 h at room temperature, followed

by overnight incubation with primary antibodies in blocking buffer at 4 �C, and then incubated with horseradish peroxidase

(HRP)-conjugated secondary antibodies in blocking buffer for 1 h at room temperature. Signal was revealed using chemiluminescent

reagent (Merck). The following antibodies were used: AID (1:300), DIS3 (1:1000) and Actin (1:5000). Imageswere adjusted for contrast

using ImageJ. Three independent experiments were performed.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing
Themajority of image analysis was performed in TissueMAPS, using previously developed methods (Stoeger et al., 2015). All images

were corrected for illumination artefacts as previously described (Stoeger et al., 2015). In some cases, we also developed new image

analysis strategies, or used pixel classification (Sommer et al., 2011) or neural networks (Stringer et al., 2021) to aid in segmentation

tasks. This is indicated where applicable.

Nuclear and cell segmentation

Nuclei were segmented by adaptive thresholding of the DAPI or H2B signal. After separating clumped nuclei and excluding small

objects, cells were then segmented using total protein stain (succinimidyl ester), using these nuclei as seeds for a watershed, as

described previously (Stoeger et al., 2015). The analysis pipeline for the genome-wide screen is described in (M€uller et al., 2021).

For MRC5 cells and the 4i experiment, we used the cellpose generalist nuclear segmentation neural network (Stringer et al., 2021)

without additional training because it yielded superior results for separating touching nuclei. However, we found that nuclei identified

by cellposewere not always completely containedwithin theDAPI-positive regions of the image, or did not completely fill the nucleus.

Cellpose nuclei were therefore further refined using adaptive thresholding and/or watershed expansion using the DAPI signal.

Nucleolar segmentation

The nucleolus was segmented from DAPI and Alexa Fluor 647-succinimidyl ester images using pixel classification in Ilastik (Sommer

et al., 2011), as depicted in Figure S2L and described previously (M€uller et al., 2021).

Cell volume measurement

To perform computational 3D cell reconstruction, cells were first segmented in two dimensions using procedures described above.

We then localised beads in 3D, using an approach previously developed for smFISH (Raj et al., 2008; Stoeger et al., 2015). The bright-

est voxel of each segmented bead in the original image was taken as the bead centre. Next, the slide surface was estimated by fitting

a plane in 3D through all beads that were detected outside of cells. The 3D positions of beads are then recalibrated relative to the slide

surface, so that the list of (x,y,z) coordinates for each cell represents the height of the upper cell surface above the slide. To recon-

struct the cell surface, outlier beads were excluded by fitting a 3D alpha shape (Da et al., 2022) to the list of coordinates for each cell,

as well as a set of points at the 2D cell periphery, which are computationally anchored to the slide surface. The upper cell surface was

then linearly interpolated using the remaining points. Code is written in python, making use of numpy (Harris et al., 2020) and scipy

(Virtanen et al., 2020), and was integrated into TissueMAPS. We directly compared cell volumes estimated with this method with

those obtained by fluorescence exclusion method (FXm) (Cadart et al., 2017) finding good agreement at the single-cell level

(Figures S1B–S1E). We also found that cell volumes correlated well with other measures of cell size, such as nuclear and cell

area, and total protein levels, visualised with succinimidyl ester staining (Figure S1F). Both protein content and nuclear area were

approximately proportional to cell volume in HeLa cells (Figure S1G) and are therefore excellent proxies for cell volume in unperturbed

cells. Correlations of volume with nuclear area were slightly higher for HeLa than for ‘‘flatter’’ 184A1 cells and keratinocytes (Fig-

ure S1H), which often form long projections.

Chromatic aberration correction – 4i

Chromatic aberrations were evident when comparing different imaging channels in the 4i experiment. To correct these, we imaged

multicolor fluorescent beads and used these to fit parameters of an affine transformation aligning each channel to the 568nmchannel.

These channel-specific transformations were then applied to all images for the 405nm, 488nm and 647nm channels, using a custom

procedure developed in python making use of scipy (Virtanen et al., 2020), numpy (Harris et al., 2020) and scikit-image (van der Walt

et al., 2014).

Data cleaning
After cell segmentation, we trained supervised machine-learning models (support-vector machines) to exclude certain acquisition

and segmentation artefacts using the TissueMAPS framework. This interactive procedure is similar in nature to previous software

developed in the lab, CellClassifier (R€amö et al., 2009). Briefly, it involves manually selecting cells with certain properties as training

data for a classifier, visualising the results of the classification, and selecting additional examples to refine the classification (Fig-

ure S2A). Throughout this work, we excluded border cells (those with pixels touching the image boundary), mitotic/apoptotic cells

(identified using DAPI texture features), cells with cytoplasmic DAPI, polynucleated cells, and all cells from sites that were not in

focus. In the genome-wide screen, we also trained a classifier to exclude mis-segmented cells (M€uller et al., 2021).

Additional data cleaning – cell volume measurement

Cell volume measurement involves computationally fitting a plane in 3D to define the slide surface. When cells were too densely

packed, this cannot be achieved accurately, preventing accurate determination of cell volume. We therefore did not compute cell

volumes for these sites, which were automatically identified based on the proportion of the image surface identified as unoccupied.

We also excluded cells with insufficient bead density, or those which were not fully captured in the confocal volume. These were

identified and removed using manually defined thresholds during exploratory data analysis.

Additional data cleaning – smFISH

smFISH probes were dispensed into 384-well plates using automated liquid handling, as previously described (Battich et al., 2013).

Inaccuracies in handling of small volumes led to a ‘quadrant effect’ in which the upper left well in each group of 4 wells contained
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smFISH spots with weaker intensity. Spots in these wells could not be unambiguously distinguished from background, so these were

excluded from further analysis. This reduced the number of perturbations studied from the target of 63 to 50.

Additional data cleaning – 4i

The 4i perturbation experiment contained 160 wells and 18 antibodies (2880 antibody/well combinations). To identify outlier wells,

we compared mean intensity measurements for each well and each antibody. Where replicates differed in any stain by more than

30%, the quantitative data and underlying images were manually examined. In most cases, the discrepancy was due to cell density

differences between replicate wells, and all data was retained. In nine cases, we identified that staining was uniformly lower in one

replicate, likely due to errors in automated liquid-handling. These antibody/well combinations (0.3% of 2880) were excluded. For

multivariate analysis (e.g. UMAP), affectedwells were entirely excluded, resulting in a single replicate being used for 6 of the 66 siRNA

conditions studied: CBX3, KDM4D, POLR3E, PGAP3, RAB5C, SNRPF.

Additional data cleaning – plasmid transfection experiments

In agreement with previous work, we found that plasmid DNA could be detected in the cytoplasm of transfected cells using poly(A)

FISH (Greenberg et al., 2019). This was prominent at 12h and 24h after transfection, but was reduced after 48h, likely due to asym-

metric partitioning during cell division (Wang et al., 2016). To identify cytoplasmic DNA foci, we used Ilastik-based pixel classification,

with poly(A) FISH and DAPI as a two-channel input. We excluded all cells containing these foci.

Background subtraction
Quantitative intensity values for stains such as DAPI, succinimidyl ester, RNA Strandbrite, and poly(A) FISH were background sub-

tracted using a constant value measured in a region outside the objects. For immunofluorescence measurements, background

values were taken from a region within the cell for a well in which the primary antibody was omitted. For EU, background values

were taken from a well that was not incubated with EU but was subject to click reaction. Since click reaction staining in the absence

of EU showed a similar staining pattern to succinimidyl ester, we used a linear modelling approach to predict the expected back-

ground based on succinimidyl ester intensity. This slightly outperformed a constant-value background subtraction approach.

Data normalisation
In some cases, we observed variation in staining intensity for different rows of the plate. These inconsistencies arise because of the

small differences in reagent volumes delivered by the automated liquid handling system, which operates row-wise. This was as-

sessed routinely during data analysis by manual inspection of intensity distributions after background subtraction. When necessary,

we multiplied all background-subtracted intensity values by a correction factor to equalize the medians of the rows. Where possible,

in genetic perturbation experiments, only negative control (scrambled siRNA) wells were used for normalisation. The same correction

strategy was used to correct for plate-to-plate variation in multi-plate experiments.

Additional normalisation – Poly(A) FISH

DNA probes for poly(A) FISH and also Strandbrite reagents were dispensed using a 96-well pipette head into 384-well plates. This

resulted in a quadrant-specific artefact in intensity that was corrected in the same way as described for row- and plate-corrections

described above.

Additional normalisation - 4i

Incubation in 4i imaging buffer (Gut et al., 2018) is detrimental to signal intensity for some antibodies. This is observed as a reduction

in intensity over the time of image acquisition (12-16 hours per imaging cycle). We corrected for this artefact by fitting an aympototic

regression model (SSasymp function in R) to the median signal intensity of all scrambled siRNA control cells as a function of acqui-

sition time (Figures S10C and S10D). Fitting was achieved using the nlsLM function from the minpack.lm package (Elzhov et al.,

2016), after removing outlier control wells. We then multiplied all values by a correction factor derived from this curve and used it

to multiplicatively scale all data based on acquisition time. This resulted in excellent agreement between intensity values of replicate

(non-control) wells, which were typically imaged 4-5 hours apart (Figure S10E).

We also observed smaller well-specific staining biases that could not be explained by time-dependent intensity reduction, but were

also not clear technical outliers. These represent technical variation inherent to the experiment. Because these can lead to biases

when computing correlations among populations of single cells from different wells, it was sometimes necessary to correct these.

This was achieved by multiplicative centering of well medians between experimental duplicates. To ensure that this did not bias

our results, we verified that correlation coefficients across the combined populations were similar to those seenwithin individual wells

(Figure S12D). Importantly, this correction was only applied to allow pooling cells frommultiple wells andwas therefore not performed

whenever values from individual wells were summarized and considered as replicates (for example for fold-change calculations, or

correlations between well-averages).

Cell cycle classification
Mitotic cells do not incorporate EU, and were therefore not of interest for this work. We first identified and removed these as

described in ‘Data cleanup’ (Figure S2A). G1 and G2 cells can be distinguished based on DNA content measured from DAPI staining

intensity. However, identifying S-phase cells requires more information. The gold standard for identifying cells undergoing DNA repli-

cation is to use 5-ethynyl-2ʹ-deoxyuridine (EdU) metabolic labelling, which is similar to EU labelling except that cells are pulsed with

EdU instead of EU to label newly synthesized DNA. Because EU and EdU detection rely on the same click chemistry, they cannot be

combined on the same sample. We therefore included several wells of EdU in our RNA metabolic labelling experiments, and used
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PCNA immunofluorescence as an S-phase marker. PCNA is localised to DNA replication foci and has a characteristic punctate

localisation in S-phase cells. By performing PCNA immunofluorescence on all wells, we could identify S-phase cells using EdU in

the EdU-treated wells and train a classifier based on PCNA to identify S-phase cells also in the EU-treated wells (Figure S2B).

More specifically, after background subtraction and feature normalisation as described above, we trained a random forest

classifier using the randomForest package in R (Liaw and Wiener, 2002), to classify S-phase cells using PCNA and DAPI texture fea-

tures. We used thresholded EdU intensity as a ground truth for cells that are undergoing DNA replication (Figure S2C). Classifiers

were typically 95-98% accurate (M€uller et al., 2021) (Figure S2D). Remaining non-S-phase cells were classified as G1 or G2 based

on DNA content (Figures S2E and S2F). In experiments with genetic perturbations, we included siRNA knockdown of GRIP2, SBF2,

NUDT4 and scrambled siRNA controls in the EdU training data to ensure robustness to cell size and morphology perturbations, as

described and validated in the accompanying manuscript (M€uller et al., 2021).

Quantitative data analysis
After extracting quantitative features from images, quantitative analysis for individual experiments was done in R (R Core Team,

2014), relying heavily on tidyverse packages (Wickham et al., 2019).

smFISH

Linear regression to predict spot count from cell volume was performed in R using the lm function with model nspots = a+ bV .

Model fits were quantified using the coefficient of determination (R2), calculated using R2 = 1 � RSS=TSS, where the residual

sum of squares, RSS =
P
i

ðyðobservedÞi � y
ðpredictedÞ
i Þ2, and the total sum of squares, TSS =

P
i

�
y
ðobservedÞ
i � 1

n

P
j

y
ðobservedÞ
j

�2

for

n observations.

Following (Padovan-Merhar et al., 2015) we quantified the fraction of predicted mRNA abundance that is volume independent

(a=ða +bVÞ) or volume-dependent (bV=ða +bVÞ) for all genes measured. This is only interpretable for a;bR 0, so we omitted genes

where a was significantly less than zero, and set a = 0 for intercepts that were slightly negative but not significantly

(p > 0:05) different from zero.

Estimation of RNA degradation rates

Cells were grown in 384-well plates andwere treated with 10mM triptolide for 0, 1.5, 2.5, 4.5h before fixation. bDNA smFISHwas used

to measure transcript abundance at all time points for 39 genes (ABL1, ACACA, APP, BIN1, COL4A1, CTCF, CTSB, DAB2, EGFR,

EIF4E, EP300, ETS2, FGF2, GTF2B, HPRT1, KIF11, LAMP2, MDM2, MSLN, MYC, NOTCH2, NUP98, PEX19, PFKL, PIP5K1A,

PPARG, PTEN, PTRF, RAB11A, RAB11FIP3, RB1, RHEB, SERPINB5, SOS1, SRPRA, STX6, TNFRSF12A, UBE2C, VCL). Genes

for which transcript counts did not decrease by at least 40%during the 4.5h triptolide treatment (21 of 39 genes) were not considered

for further analysis. To estimate mRNA degradation rates for the remaining genes, cells were separated into size bins based on pro-

tein content (Figure S3B). We then fitted a linear model to log-transformed cytoplasmic transcript abundance (logðspot count+ 1Þ) as
a function of time for each gene and each cell size bin (Figures S3C and S3D). The fit was performed using the lm function in R for all

bins with an average cell count > 10. Slope values from these models are an estimate of RNA degradation rates. These showed no

consistent dependence on cell size (Figure S3E).

As a second approach to estimating degradation rates from this data, we adapted a previously described method (Padovan-Mer-

har et al., 2015). Briefly, we used linear regression to predict the the cytoplasmic transcript abundance for each gene in non-

inhibited cells (Figure S3F). This was done using the lm function in R, with protein content, cell area and DNA content as predictors

(mean R2 = 0:51). We then applied these models to transcriptionally inhibited cells, to estimate the number of transcripts expected

at the single cell level in the absence of transcriptional inhibition (Figure S3G). This leads to two values for each cell: the measured

spot count, nmeasuredðt > 0Þ, and the predicted spot count before transcriptional inhibition, npredictedðt = 0Þ. If transcript abundance de-
cays as a single exponential and cell size does not change during transcriptional inhibition these values are related by the following

equation:

nmeasuredðtÞ = npredictedð0Þe� lt:

Where l is the RNA degradation rate. Using this equation, we calculated l and then examined how it varies with cell size (Figure S3H).

Quantitative reverse transcription PCR (RT-qPCR)

Relative gene expression was calculated using the 2�DDCt method (Livak and Schmittgen, 2001). To normalize between samples,DCt

was computed by calculating the mean Ct of three control genes (RPL13, ACTIN, UBC) in each sample and subtracting this from the

Ct value for every other gene in that sample (Vandesompele et al., 2002). DDCt was computed for each gene by first calculating the

mean DCt of that gene in the three scrambled siRNA control samples and then subtracting this value from the DCt values of the gene

in all samples. Relative expression values and 95% confidence intervals were estimated from the n = 3 independent experiments

as 2meanð�DDCtÞ and
h
2
meanð�DDCtÞ� 1:96 sdð�DDCtÞffiffi

n
p

;2
meanð�DDCtÞ+ 1:96 sdð �DDCtÞffiffi

n
p

i
, respectively.

Robust linear regression

Where noted, fit lines were obtained using robust linear regression. This was done in R using the lmrob function from the robustbase

package (Todorov and Filzmoser, 2009) with lmrob.control(‘‘KS2014’’).
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Fold-change estimates

To compute fold-changes in intensity values observed between conditions, we took the median across all cells in each well (or a

subset of cells such as a certain cell-cycle stage, as specified). We then compared these well-medians of a particular experimental

condition with thewell-medians of the appropriate control wells by computing all pairwise ratios (for example n replicate experimental

wells with k control wells gives n3k fold-change estimates). We either summarized all n3k ratios as a boxplot or reported summary

statistics for these ratios such as their mean and standard deviation.

Partial correlations

Pairwise partial correlation coefficients (Figure S12H) were calculated using the pcor function in the ppcor package in R (Kim, 2015).

Such partial correlations represent correlations in which the effects of all other variables on the two under consideration are first taken

into account. In cases where we account for the effects of a single additional variable before calculating the correlation (e.g. nuclear

area (rx;EUjnuclear area)), partial correlations were calculated using the pcor.test function.

Multiple linear regression

Linear regression was performed with sum nuclear EU intensity as the response variable and different combinations of predictors. In

caseswhere thereweremore than three predictors, we standardised all variables, performed principal component analysis (using the

prcomp function in R), and kept enough principal components to capture 99.9% of the variance in the data. For 4i data, we omitted

outlier antibody/well combinations, identified as described above. Multiple linear regression was performed using the ‘lasso’ method

with 10-fold cross-validation using the glmnet R package (cv.glmnet) (Friedman et al., 2010). To fit models, we omitted each replicate

well from the training data, trained amodel on the remaining data, and then predicted values for the non-training well. This procedure

was repeated for each replicate well, to generate predicted values for every cell. The procedure avoids testing models on data that

was used to fit the model, but does not arbitrarily assign a training and test set.

‘Residual’-based corrected intensities

Changes in EU incorporation or RNA abundance in genetically perturbed cells are confounded with changes in cell size, cell cycle

and/or population-context. To correct for these effects, we used regression to linearly account for any confounding variables at

the single cell level, and then used the residuals of this regression as a ‘corrected’ intensity measurement. In all cases, regression

models were trained on control cells from the same experiment, so the residual measurement represents the deviation of a particular

cell from that expected for a control cell. Variables that were corrected in this way are described throughout the main text, including

mean nuclear EU, sum nuclear EU, sum nucleolar EU and sum nucleoplasmic EU in metabolic RNA labelling experiments; RNA

Strandbrite and poly(A) FISH in the RNA abundance screen; smFISH transcript abundance counts; POLR2A and EU intensities in

4i dataset, and POLR2A-GFP in MRC5 POLR2A-GFP cells.

The particular confounding variables considered differed between experiments, depending on which additional information was

available from the other cellular stains, and also the type of analysis being considered. The variables whose effects are included

in the correction are identified in the text. Typically, these included some or all of the following: nuclear and cell area, cell cycle stage,

total protein content (sum cell succinimidyl ester), and local cell density. We now describe in detail how these corrections are per-

formed for a single response variable.

We first identified if there were any outlier control wells. These are important to remove before using as training data for the regres-

sion models. To identify these, we trained a model on all replicate control wells except one, and then predicted the response variable

in the well omitted from model training. Quantifying this model fit using using R2, we then used a one-sided boxplot rule on R2 to

classify wells as outliers if R2 <Q1

�
R2

� � 1:53 IQR
�
R2

�
, where IQR is the interquartile range. This specifically identifies wells that

are poorly predicted by models trained on all other replicate wells. Such ‘outlier’ wells are retained in the dataset but were omitted

for training the regression model used to correct non-control wells to ‘residual’-type variables.

Regression models were trained in several different ways, depending on the number of predictors. For example, residual mean EU

is derived from amodel containing a single categorical predictor: cell cycle stage, so the ‘residual’ simply corresponds to subtracting

a cell-cycle specific value from eachmeasurement. In contrast residual sum EU for the nucleus, nucleolus and nucleoplasm contains

total protein content a continuous predictor as well as cell cycle as a discrete predictor, so simple linear regression was used. For

more than two predictors, we used cross-validated ‘lasso’ multiple linear regression using the glmnet R package (cv.glmnet) (Fried-

man et al., 2010). In cases with several correlated predictors we also included a PCA-based dimensionality reduction of the predictor

variables (maintaining 99.5% of variance) before regression. Typically, these values were averaged on a per-well basis by taking the

mean. These ‘‘mean residual’’ measurements were finally standardised to the mean and variance of scrambled siRNA control wells

using the Z-score, to give a measurement in units of standard deviation of scrambled siRNA controls.

Genome-wide and secondary screen analysis

Quantitative data analysis of single-cell intensity measurements from the genome-wide screen and secondary screen were

described previously (M€uller et al., 2021). Lower and upper hit thresholds correspond to posterior probabilities of 0.5 and 0.85 for

perturbations being reproducibly observed outside the 1st and 99th percentile of scrambled siRNA controls. Calculation of these

thresholds was also described previously (M€uller et al., 2021). ‘Low cell number’ in the screen corresponds to 500 interphase cells

imaged and segmented after data cleanup. There were 258 conditions with less than 500 cells in the genome-wide screen (approx-

imately 1% of gene perturbations). These were included in certain overviews (e.g. Figures 2C and 2D) but were typically excluded, as

noted throughout, for example in hit scoring and functional annotation enrichment.

Hit scoring made use of two residuals-based models: either predicting ‘sum EU’ (with cellular protein content and cell-cycle stage

as predictors) or ‘mean EU’ (EU intensity averaged over nuclear area, with only cell cycle stage as a predictor). The ‘sum EU’ model
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explicitly accounts for cell size, while ‘mean EU’ implicitly takes cell size changes into account because nuclear size also scales with

cell size (Cantwell and Nurse, 2019). In unperturbed cells, both nuclear area and protein content are proportional to cell volume

(Figure S1G). These two residual-based measurements were highly correlated (r = 0:94), but ‘mean EU’ was slightly less variable

between wells and screens and was therefore more sensitive, possibly because it avoids technical variability in measurement of

cellular protein content (Figures S4B and S4D) (M€uller et al., 2021). Mean residual sum EU for the nucleolus and nucleoplasm

were calculated as described for the sum EU model. Comparison of mean residual measurements between primary and secondary

screens was used to define hit thresholds in all cases, as described previously (M€uller et al., 2021).

The selection of 436 siRNA perturbations for the secondary screen (RNA metabolic labelling and poly(A) FISH / RNA Strandbrite)

was done in an automated manner designed to preserve both functional and phenotypic diversity of the panel, as described

previously (M€uller et al., 2021). Selection of genes for the final panel of 63 perturbations for detailed characterization by 4i was

donemanually based on enriched functional annotations and results of the secondary screen. Gene lists and other metadata are pro-

vided together with the experimental results at the locations listed in key resources table.

Estimation of transcriptional scaling in genome-wide screen

Linear regression to determine slope and intercept values for the relationship between sum nuclear EU and cellular protein content

was performed for all perturbations in the genome-wide screen with at least 500 cells. This was done in R using the lmrob function

from the robustbase package (Todorov and Filzmoser, 2009) with lmrob.control("KS2014"). If there were less than 30 cells in a partic-

ular cell-cycle stage, those cells were omitted. This analysis was complicated by the presence of strong overall changes to EU incor-

poration and incomplete phenotypic penetrance of perturbations, which together resulted in cell populations with large cell-to-cell

variability in EU incorporation. Across perturbations, slopes were correlated with mean EU intensity, however they were highly var-

iable even between replicates (Figure S4F).

Robust coefficient of variation (RCV)

Despite data clean-up, single cell data can contain spurious outlier observations, particularly in genetic perturbation experiments. To

estimate the population variability, we therefore used a robust analogue of the coefficient of variation given by RCVM = 1:4826 3

MAD =median, where RCVM = 1:4826 3MAD =median is the median absolute deviation, given by MADðxÞ = medianðjx � mjÞ
where m = medianðxÞ (Arachchige et al., 2022).

4i data analysis – UMAP

After background subtraction and data normalisation, we combined mean nuclear intensities and textures for all markers except EU,

together with mean cytoplasmic intensities and textures of PABPC1 and PABPC4, nuclear and cell morphology measurements, and

measurements of local cell density (Snijder et al., 2012) into a matrix of 436,593 cells by 718 features. We then standardised all fea-

tures to scrambled siRNA control cells using the robust z-score: x/ðx � medianðxscrambledÞÞ=ð1:4826 3 MADðxscrambledÞ Þ and per-

formed dimensionality reduction via principal component analysis (PCA) using the R function prcomp, keeping 95% of the variance

(first 108 principal components). We then randomly sampled 1400 cells from each siRNA perturbation condition and used this PCA-

transformed data as input for umap using the R uwot package (Melville, 2021) with parameters a = 0.25 and b = 0.9. Finally, we used

the umap_transform function to embed the full dataset in UMAP space.

Systems-level analysis
Functional annotation enrichment scoring

We retrieved GO biological process, KEGG pathways, and Reactome annotations for all genes assayed using the

GeneSets.Homo.sapiens R package (Simillion, 2020), and removed any genes with zero annotations. Genes were then ranked using

a quantitative phenotype (e.g. mean residual EU) for both ‘up’ and ‘down’ hit classes separately. These ranked lists were used to

search for over-represented annotations, adapting a previously published method (Green and Pelkmans, 2016). Briefly, for each

annotation, we count the number times, k that a given annotation is observed between rank 1 and n, and compute the probability

that this occurs by chance, given the number of assayed genes, N, of which K have the corresponding annotation. This probability

is given by the hypergeometric distribution function:

Pðk;K;N;nÞ =
XK
x = k

�
K
x

��
N � K
n � x

�
�
N
n

� ;

which is implemented in R as phyper(k-1,K,N-K,n,lower.tail = FALSE). This calculation is repeated for all ranks from n = 1; :::; nt
where nt is the rank at which the probability threshold exceeds 0.5 (50/50 whether a hit is reproducible). The functional annotation

enrichment score (FAES) is then calculated using the minimum value of this probability, FAES = � log 10ðminn< ntPðk;K;N; nÞÞ.
We also note the rank n = nmin at which this minimum occurs.

To represent these enriched annotations as a network, we selected up and down-enriched annotations with FAES > 2, removing

any annotations with less than 20 or more than 3500 genes. We then measured the pairwise similarities between annotations, using

the Cohen’s kappa statistic, k, (Cohen, 1960) provided by the Kappa function in the vcd R package (Meyer et al., 2020). Annotations

for which k> 0:85, weremerged into a group, keeping the highest FAES score for an annotation in that group. We then built a graph of

these enriched annotations, where edges between nodes represent annotations with some overlap in the gene set (k > 0.15). The
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network was finally visualised in Cytoscape (Shannon et al., 2003) using spring-embedded layout based on the edge weights (k), also

making use of enhancedGraphics (Morris et al., 2014).

To calculate FAES for the nucleolar-specificity of annotations that were enriched for reduced EU incorporation, we calculated

‘‘nucleolar preference’’ of a perturbation, which we defined as the residual of ‘‘residual nucleolus sum EU’’ after regressing out ‘‘re-

sidual nucleoplasm sum EU’’ (Figure S6H). Nucleolar preference gives a quantitative measurement of the reduction in nucleolar EU

compared to that expected based on nucleoplasmic EU. Nucleolar preference is positive for perturbations with stronger nucleolar EU

reduction than nucleoplasmic EU reduction. We then performed rank-based enrichment analysis for nucleolar preference using all

genes with pposterior > 0:5 for either residual nucleoplasm sum EU or residual nucleolus sum EU (Figure S6I). Finally, we compared this

to FAES for reduced residual nucleolus sum EU, and identified annotations that were enriched in both analyses (Figure S6J).

Gene interaction networks

After grouping enriched annotations using Cohen’s k, as described above, we obtained protein-protein association networks from

the STRING database (Szklarczyk et al., 2019) for all genes in a certain annotation group. We then constructed networks in which

genes are connected if their aggregated interaction score is > 0.7. Networks were visualised in Cytoscape (Shannon et al., 2003) us-

ing spring-embedded layout based on the edge weights (association score).

Hierarchical clustering

Hierarchical clustering was performed in R using the seriation package (Hahsler et al., 2008) using Ward’s algorithm with optimal leaf

ordering. Heatmaps were visualised with the ComplexHeatmap package (Gu et al., 2016).

Mathematical modelling
Ordinary differential equation (ODE) modelling was performed in R (R Core Team, 2014) using the deSolve (Soetaert et al., 2010)

package. Parameter optimisation was done using the optimx (Nash and Varadhan, 2011) package, using least-squares minimisation

on log-transformed data and predictions.

Minimal model without RNA-based feedback

Steurer et al. (2018) developed a model of the RNA Pol II transcription cycle in which RNA Pol II can exist in one of four states, which

we here refer to as Unbound, Initiating, Paused, and Elongating. Their model was parameterised and validated using RNA Pol II fluo-

rescence recovery after photobleaching (FRAP) of MRC5 POLR2A-GFP cells, using several chemical inhibitors with known mecha-

nism of action. To adapt this model to an ordinary differential equation framework, we modelled the RNA Pol II transcription cycle

using the reaction network depicted in Figure S13A. Using mass-action kinetics, this gives rise to the following system of ODEs in

terms of concentration,

_pu = ks + k1pi + k2pp + ktpa � kdpu � kipu

_pp = kppi � ðk2 + kaÞpp

_pa = kapp � ktpa

_R = ktpa � rdR

where pu; pi; pp; pa are unbound, initiating, paused, active (elongating) RNA Pol II, R is RNA, and _x = dx
dt denotes the time-deriv-

ative of x. Note that RNA is created at a rate ktpa, the same overall rate at which RNA Pol II terminates elongation, meaning that we do

not consider premature termination of transcription (other than transcription aborting after pausing). We set kt using the FRAP recov-

ery timescale of the elongating state (1370 seconds), and then optimised the remaining RNAPol II transition rate parameters (ki; kp; ka;

k1;k2) to obtain the observed fractions of RNA Pol II states at steady-state (7% Free, 10% Initiating, 23%Paused, 60%Elongating). A

further constraint from (Steurer et al., 2018) relates to the finding that only 12.7% of polymerases that attempt initiation proceed to

promoter pausing, and only 7.6% of promoter-paused polymerases continue to productive elongation. This allowed us to specify k1
and k2 in terms of kp and ka, respectively (k1 = 6:873 kp, k1 = 12:163 ka).

After setting the total concentration of RNA Pol II in the nucleus at 105 molecules pL-1 (Steurer et al., 2018), there remains a single

free parameter (ks), which sets the timescale of RNAPol II synthesis / degradation. This parameter has units of molecules pL-1s-1, so a

constant value corresponds to an absolute (molecular) rate of RNA Pol II synthesis that scales with cell volume. To extract ks from our

data, we simulated triptolide-based transcriptional inhibition by setting ki = 0, and AZD4573-based CDK9 inhibition by setting ka =

0, keeping all other parameters unchanged. We then optimised ks to fit the combined data from these two experiments, with

POLR2A-S2P identified as elongating RNA Pol II (Heidemann et al., 2013) (POLR2A-S2P = pa). Parameters and their final fitted

values are listed in Table S1. To investigate alternative models in which multiple RNA Pol II states were subject to degradation

(Figures 6B and S13B), we added extra � kdpx (for x˛ i;p;a) terms to the relevant ODEs, and refit ks, as described above.

Adding RNA-based feedback

Having parameterised the RNA Pol II model, we then included RNA-based feedback as either a Hill-type activation of RNA Pol II

degradation kd/kdðR =K +RÞ, or a Hill-type repression of ki; kp; ka (with Hill coefficient n = 1), kx/kxðK =K +RÞ for x˛ i;p;a. In

all cases, this change required re-fitting of some of the parameters from the base model to achieve the correct fractions of RNA

Pol II in each state and the same total RNA Pol II concentration (Table S1).

To fit the RNA degradation rate and feedback parameters, rd, and K, we simulated auxin-induced degradation of DIS3 by setting,

rd/rdðtÞ = rdðminÞ +
�
rdðmaxÞ � rdðminÞ

�
2� t=20
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which simulates the exponential decrease in DIS3 abundance observed experimentally (Davidson et al., 2019). rd does not decrease

to zero because this parameter represents all nuclear mRNA degradation and export, as well as dilution due to nuclear

growth. We used rdðminÞ = rdðmaxÞ=4, which assumes that DIS3 is responsible for �3/4 of nuclear mRNA degradation, however

the actual value does not qualitatively affect the differences seen between models. Assuming POLR2A = pu +pi +pp +pa,

POLR2A-S5P = pp +pa, POLR2A-S2P = pa and mRNA = R, we optimised rd, and K to fit mRNA (poly(A) FISH) and RNA Pol II

(POLR2A, POLR2A-S5P, POLR2A-S2P immunofluorescence) measurements from DIS3-AID experiments. The magnitude of RNA

Pol II changes in the model are governed mostly by K (representing the concentration of RNA with half-maximal effect on kx ). How-

ever, the precise value of K does not affect the qualitative differences between models in terms of the relative effects on POLR2A,

POLR2A-S5P, and POLR2A-S2P.

To analyse how steady-state RNA levels are affected by changes to model parameters (parameter sensitivity analysis) in

Figures S13D and S13E, we focused on the model which was most consistent with the experimental data (RNA Pol II feedback

on ‘‘paused’’ to ‘‘elongating’’ transitions: ka/kaðK =K +RÞ). We varied either ks (to simulate over- or under-production of RNA Pol

II) or rd (to simulate changes to nuclear RNA degradation, export or growth rate), and then re-calculated the steady-state values

of POLR2A or RNA for this new parameter set (represented relative to steady state levels obtained from the best-fit parameters).

In Figure S13E, we further considered how non-linear feedback of RNA affects buffering capacity by ka/kaðKn =Kn +RnÞ for n˛
1;2;4. In Figures S13F and S13G, we considered how models respond dynamically to perturbation of cell volume. For example, a

20% cell volume increase was modelled by dividing each of the steady-state concentrations by 1.2. We then simulated the return

to steady-state concentrations using numerical integration.
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