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Abstract Quantitative gene regulation at the cell population level can be achieved by two 
fundamentally different modes of regulation at individual gene copies. A ‘digital’ mode involves 
binary ON/OFF expression states, with population- level variation arising from the proportion of 
gene copies in each state, while an ‘analog’ mode involves graded expression levels at each gene 
copy. At the Arabidopsis floral repressor FLOWERING LOCUS C (FLC), ‘digital’ Polycomb silencing 
is known to facilitate quantitative epigenetic memory in response to cold. However, whether FLC 
regulation before cold involves analog or digital modes is unknown. Using quantitative fluorescent 
imaging of FLC mRNA and protein, together with mathematical modeling, we find that FLC expres-
sion before cold is regulated by both analog and digital modes. We observe a temporal separation 
between the two modes, with analog preceding digital. The analog mode can maintain interme-
diate expression levels at individual FLC gene copies, before subsequent digital silencing, consis-
tent with the copies switching OFF stochastically and heritably without cold. This switch leads to a 
slow reduction in FLC expression at the cell population level. These data present a new paradigm 
for gradual repression, elucidating how analog transcriptional and digital epigenetic memory path-
ways can be integrated.

Editor's evaluation
Regulation of gene expression in many biological systems occurs either digitally where gene expres-
sion is either on or off or through an analog mode with graded modulation of gene expression. In 
this study, the authors report how these two regulatory modes are integrated into a one- way switch 
pattern to control the expression of the Arabidopsis floral repressor gene FLOWERING LOCUS C 
(FLC). The results of their work lead the authors to propose that analog regulation in the autono-
mous flowering pathway precedes digital regulation conferred by Polycomb silencing before cold 
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exposure, and that this temporal switch correlates with the strength of transcription at the FLC locus 
in different genetic backgrounds.

Introduction
One of the most fundamental questions in molecular biology is how quantitative gene expression is 
achieved. Traditionally, such regulation is ascribed to sequence- specific transcription factors that bind 
to regulatory DNA elements. According to the concentration of the transcription factors, gene expres-
sion can then be quantitatively up- or downregulated. While such regulation undoubtedly occurs in 
many systems, it has become abundantly clear in recent years that this paradigm is fundamentally 
incomplete. This is especially so in eukaryotes where quantitative transcriptional regulation can arise 
from modulation of the local chromatin environment of a gene. For example, by varying the type and 
level of histone modifications, DNA accessibility can be radically altered (Ahmad et al., 2022). In one 
scenario, nucleosome positioning affects the ability of transcription factors to bind. Another possibility 
is that alteration of the chromatin environment directly affects the kinetics of transcription (Coulon 
et al., 2014) by altering how fast the RNA polymerase elongates.

For the Arabidopsis floral repressor gene FLOWERING LOCUS C (FLC), it has been shown that 
expression levels are quantitatively reduced by a prolonged duration of cold. This quantitative 
response is achieved through individual FLC gene copies making a cis- mediated, digital switch from 
an ‘ON’ (expressing) state to an ‘OFF’ (silenced) state (Angel et al., 2011). This switch is asynchronous 
between gene copies, even in the same cell, with the number switched OFF increasing over time in 
the cold. This results in a gradual decrease in FLC expression over time at a whole plant level with 
silenced gene copies covered by high levels of the silencing histone mark H3K27me3 controlled by 
the Polycomb system through Polycomb Repressive Complex 2 (PRC2). This mode of regulation is 
called ‘digital,’ to highlight the discrete ON/OFF states for each gene copy (Figure 1A, Digital Regu-
lation, Munsky and Neuert, 2015). Such digital regulation has also been observed in many other 
systems, both natural (Saxton and Rine, 2022) and engineered (Bintu et al., 2016).

An alternative mode of quantitative gene regulation is one that allows graded expression levels 
to be maintained at each gene copy, rather than just an ON or an OFF state. Quantitative regulation 
at the cell population level can then be achieved by tuning the expression level uniformly at all gene 
copies, as in inducible gene expression systems. A well- characterized example of such behavior is 
in the level of stress- responsive gene expression as controlled by the transcription factor Msn2 in 
budding yeast (Stewart- Ornstein et al., 2013). This graded mode of regulation is called ‘analog’ 
(Figure 1A, Analog Regulation, ), in contrast to the digital alternative.

While FLC loci are known to have digital behavior during and after a cold treatment, allowing 
them to robustly hold epigenetic memory of cold exposure, it remains unknown how the starting 
expression levels (prior to cold) are regulated quantitatively in terms of analog versus digital control. 
After plants germinate, they grow as seedlings that have not experienced any cold exposure, or 
digital Polycomb switching, so quantitative variation in FLC expression seen in young seedlings could 
represent different cellular proportions of digitally regulated FLC, as well as graded transcriptional 
changes. More generally, elucidating the interplay between analog and digital control is essential for 
a more in- depth understanding of quantitative gene regulation. Although digital and analog modes 
of repression have been separately studied in the past (see, e.g., ), how these two fundamentally 
different modes of regulation might be combined has not been considered. FLC is an ideal system to 
study this question due to its digital control after cold, as well as the wealth of knowledge about its 
regulation at all stages (Berry and Dean, 2015; Wu et al., 2020).

FLC levels are set during embryogenesis by competition between an FLC activator called FRIGIDA 
(FRI) and the so- called autonomous repressive pathway (Figure 1B, Li et  al., 2018; Schon et  al., 
2021). The commonly used Arabidopsis accessions Ler and Col- 0, have mutations in the FRI gene, 
allowing the autonomous pathway to dominate, thereby repressing FLC during vegetative develop-
ment and resulting in a rapidly cycling summer annual lifestyle (Johanson et al., 2000). On the other 
hand, genetic introduction of an active FRI allele (ColFRI, Lee and Amasino, 1995) generates an 
initially high FLC expression state, which then requires cold for FLC repression and subsequent flow-
ering. However, both these cases, with high (ColFRI) or low (Ler, Col- 0) FLC expression, are extreme 
examples, where essentially all FLC loci are either expressed to a high level or not, before cold. It is 
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Figure 1. Schematic of digital and analog gene regulation. (A) Digital regulation (left) corresponds to loci being in 
an ‘ON’ state (purple) or ‘OFF’ state (white), where we assume for simplicity that there is only one gene copy per 
cell. At the tissue level, moving from low to high average expression (columns left to right) is achieved by a change 
in the fraction of cells in each of the two states. This mode is distinct from analog regulation (right), where each 

Figure 1 continued on next page
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therefore difficult to use these genotypes to understand any possible interplay between digital and 
analog control as only the extremes are exhibited. Instead, what is required is a genotype with inter-
mediate FLC expression at a cell population level during embryogenesis. Such a genotype at a single 
gene copy level might exhibit either a graded (analog) or all- or- nothing (digital) FLC expression before 
cold, thereby allowing dissection of whether analog or digital regulation is at work.

In this work, we exploited mutant alleles in FLOWERING CONTROL LOCUS A (FCA), which is part 
of the FLC- repressive autonomous pathway, thereby systematically varying overall FLC levels. One of 
these mutants, fca- 1 (Koornneef et al., 1991), is a complete loss of function and therefore exhibits 
late flowering (Figure 1—figure supplement 1A) and high FLC expression before cold (Figure 1C, 
Figure 1—figure supplement 1B–D), similar to ColFRI. The wildtype, Ler, has a fully functional auton-
omous pathway and so exhibits low FLC levels before cold (Figure 1C, Figure 1—figure supplement 
1B–D) and early flowering (Figure 1—figure supplement 1A), with the FLC gene covered by the 
silencing histone mark H3K27me3 (Wu et al., 2020). Crucially, however, the fca- 3 and fca- 4 mutants 
lead to compromised FCA function (see ‘Materials and methods’ and Koornneef et al., 1991). In 
fca- 3, there is a splice site mutation that leads to changed exon structure through variable use of 
alternative splice sites with either loss or misfolding of the C- terminus (Macknight et  al., 2002). 
The fca- 4 allele is the result of a large genomic inversion that disrupts the FCA gene at the 3′ end 
of exon 4 (Page et al., 1999). The expressed 3′ fragment contains the second RNA- binding domain 
and the C- terminal region of the protein including the WW protein interaction domain, sufficient 
to give an intermediate flowering time phenotype (Page et al., 1999). Both mutants display inter-
mediate cell population- level FLC expression (Figure 1C, Figure 1—figure supplement 1B–D) and 
flowering time (Figure 1—figure supplement 1A), indicating partial functionality of the FCA protein 
in these mutants. Crucially, this intermediate property allows us to systematically dissect the interplay 
of analog and digital regulation at FLC before cold using a combination of single cell and whole plant 
assays, together with mathematical modeling, revealing a temporal separation between the two regu-
latory modes.

Results
Analysis of fca alleles reveals both analog and digital regulation at FLC
To investigate the mode of repression arising from regulation by the autonomous pathway, we 
utilized the fca- 1 and fca- 3 mutants, as well as the parental Ler genotype, and assayed how indi-
vidual cells varied in their FLC expression in these three genotypes at 7 d after sowing. We quanti-
fied the number of individual mRNAs per cell using single- molecule fluorescence in situ hybridization 
(smFISH) (Figure  2A and B, Figure  2—figure supplement 1A and B). The endogenous Ler FLC 
carries a Mutator transposable element (TE) in intron 1, silencing FLC expression (Liu et al., 2004). 
Possibly because of the TE, we observed FLC mRNA accumulation in the nucleolus in this background 
(Figure 2—figure supplement 1A). To avoid this complication, we transformed a Venus- tagged FLC 
into Ler (Figure 2A, ). The transgenic FLC sequence was from Col- 0, which does not contain the 
TE. We then crossed the FLC- Venus into our mutant genotypes (fca- 1, fca- 3, fca- 4), thus ensuring 
that the transgene is in the same genomic location and therefore that changes in its expression will 
be due to the FCA mutations in these lines. We also used smFISH probes agaisnt the Venus and 
FLC sequence. These probes generated a signal specific to the transgenic FLC copy in these plants 

cell has a graded expression level that roughly corresponds to the overall population average. (B) FLC represses 
the transition to flowering and is controlled by FRIGIDA, the autonomous pathway and the vernalization pathway 
(inducing digital epigenetic silencing in the cold). (C) Reduced FCA activity leads to higher cell population- level 
FLC expression in fca mutants. Wildtype Ler has lowest FLC expression, fca- 3 intermediate and fca- 1 highest. 
Expression is measured by qPCR relative to the house- keeping gene index (geometric mean of PP2A and 
UBC). Error bars show SEM of n = 3 biological replicates measured 7 d after sowing. Statistical tests: multiple 
comparisons following ANOVA (F- value = 214.62, p- value=2.6 · 10-6) with Tukey HSD post hoc tests for fca- 3 – fca- 1: 
p- value=0.00029; fca- 3 – Ler: p- value=5.5 · 10-5; fca- 1 – Ler: p- value<2.6 · 10-6 .

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Characterization of fca alleles and FLC- Venus transgene.

Figure 1 continued

https://doi.org/10.7554/eLife.79743
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Figure 2. FLC expression per cell in fca mutants. (A) Schematic diagram of FLC- Venus locus with transcript and 
exonic probe position indicated. A total of 40 probes were designed, 10 against the FLC sequence and 30 for the 
Venus sequence. (B) Detection of FLC- Venus transcripts in single cells. Representative images of isolated cells 
with DAPI staining (blue) and FLC- Venus mRNA (gray) obtained from Arabidopsis thaliana root squashes. Scale 

Figure 2 continued on next page
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since we observed no signal in lines without the transgenic FLC (Figure 2—figure supplement 1B). 
Comparison of whole- plant gene expression showed similar behavior in the mutants for both the 
endogenous and transformed FLC (Figure 1—figure supplement 1C and D). Focusing on the Venus 
sequence conferred the additional advantage that we were able to use the same lines for both mRNA 
and protein level quantifications (see below).

We observed that the mean number of FLC mRNA transcripts per cell was highest in fca- 1, lowest 
in Ler, and intermediate in fca- 3, with the distributions being significantly different (Figure 2C, all 
differences significant with Bonferroni- adjusted p≤1.2 · 10-9), with 89% of fca- 1 cells having higher 
expression than the 95th percentile of fca- 3 cells. Furthermore, when looking only at the ON cells 
(Figure  2—figure supplement 1C; ON cells defined here as cells with more than three mRNAs 
counted, though the conclusion is unchanged with alternative thresholds; Figure 2—figure supple-
ment 2), the mRNA numbers in fca- 3 were only around 1/5 of those in fca- 1, much less than one- half, 
ruling out that the reduced levels in fca- 3 were solely due to silencing of one of the two gene copies. 
The mRNA distribution of fca- 3 cells is significantly different from Ler, confirming that fca- 3 is not 
simply all digitally OFF. However, we note that the Ler images contain noisy signals due to background 
(see ‘Materials and methods’), resulting in the detection of ON cells with similar mRNA counts as in 
fca- 3 (Figure 2—figure supplement 1). Despite this, fca- 3 has considerably more ON cells than in 
Ler (Figure 2—figure supplement 1), indicating that counts for fca- 3 are not simply background. 
Visual inspection and manual counting of images further confirmed these conclusions (‘Materials and 
methods’). Nevertheless, mRNA numbers in many fca- 3 cells were close to zero, suggesting that 
digital silencing may also be relevant in this case. Hence, the differences in overall expression between 
the mutant genotypes appeared to have two components. Firstly, there were different fractions of 
apparently silenced cells (digitally OFF) without any appreciable expression (three or fewer mRNAs 
counted): 72% in fca- 3 and 1.5% in fca- 1. Secondly, in cells that did express FLC (digitally ON), the 
FCA mutations lead to an analog change in their expression levels, so that there was more FLC mRNA 
in fca- 1 ON cells than in the fca- 3 ON cells (Figure 2—figure supplement 1C). This behavior clearly 
differed from the digital regulation observed at FLC after cold treatment (Figure 1A, Angel et al., 
2011; Rosa et al., 2016).

bar, 5 μm. (C) Histograms of single- molecule fluorescence in situ hybridization (smFISH) results for each genotype 
(Ler, fca- 3, fca- 1) showing the number of single- molecule FLC- Venus RNAs detected per cell. We show the 
distribution for Ler, but note that this is likely indistinguishable from background using our methods. The means 
and medians of the distributions are indicated in each panel. Insets show the same data for mRNA counts between 
0 and 10 (where 10 is the 95th percentile of the fca- 3 data). For Ler n = 853, fca- 3 n = 1088, fca- 1 n = 792; data 
from 7 d after sowing (two independent experiments). Statistical tests: three- way comparison with Kruskal–Wallis 
( χ

2 (2
)

= 1611.21 , p- value=0) and pairwise comparisons with Wilcoxon rank sum tests with Bonferroni- adjusted 
p- values for fca- 3 – fca- 1: adj. p- valu =5.5 · 10-275; fca- 3 – Ler: adj. p- value 1.2 · 10-9; fca- 1 – Ler: adj. p- value=2.9 · 
10-257. (D) Representative confocal images of roots for each genotype. FLC- Venus intensity indicated by color maps; 
gray shows the propidium iodide (PI) channel. Same settings were used for imaging and image presentation in 
(i–iii). Images in (iv) and (v) are the same as (i) and (ii), respectively, but adjusted to enhance the Venus signal by 
changing brightness and contrast (please note different scale of color map). Yellow boxes in (v) show short files 
of ON cells. Scale bar, 50 μm. (E) Histograms of FLC- Venus intensity per cell in each genotype. The means and 
medians of the distributions are indicated in each panel. For Ler n = 537 cells from 6 roots, fca- 3 n = 1515 cells 
from 14 roots, fca- 1 n = 1031 cells from 11 roots; data from 7 d after sowing (two independent experiments). 
Statistical tests: three- way comparison with Kruskal–Wallis ( χ

2 (2
)

= 1607.56 , p- value=0) and pairwise comparisons 
with Wilcoxon rank sum tests with Bonferroni- adjusted p- values for fca- 3 – fca- 1: adj. p- value=8.7 · 10-281; fca- 3 – 
Ler: adj. p- value=1.7 · 10-32; fca- 1 – Ler: adj. p- value=1.2 · 10-201.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Single- molecule fluorescence in situ hybridization (smFISH) method for FLC- Venus imaging.

Figure supplement 2. Threshold for ON/OFF state of cells in single- molecule fluorescence in situ hybridization 
(smFISH) experiments.

Figure supplement 3. FLC- Venus imaging in fca alleles – root replicates and fca- 4.

Figure supplement 4. FLC- Venus imaging in fca mutants and wildtype, in young leaf tissue.

Figure supplement 5. Segmentation and quantification method for FLC- Venus protein intensity per nucleus.

Figure 2 continued

https://doi.org/10.7554/eLife.79743
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We additionally used confocal live imaging to investigate FLC protein levels in individual cells 
in the root tip (Figure 2D, Figure 2—figure supplement 3) and in young leaves (Figure 2—figure 
supplement 4). We found similar protein expression patterns in roots and leaves, suggesting that 
each mutation was having similar effects in different tissues. Therefore, conclusions we draw from 
root experiments can be extended to FLC regulation in leaves. Imaging in roots has clear technical 
advantages, as well as the presence of clonal cell files which can inform heritability, and so further 
microscopy experiments are in root tissue only. After cell segmentation, we quantified the FLC- Venus 
intensity within the nuclei, comparing the different genotypes (Figure 2E, Figure 2—figure supple-
ment 5; all differences are significant with  p ). This procedure allowed us to combine information of 
relative protein levels with the cell positions in the root. Median intensity levels of FLC -Venus per cell 
and the overall histogram distribution revealed again intermediate levels of FLC protein in fca- 3, rela-
tive to Ler and fca- 1. At the same time, there was again strong evidence in favor of a digital compo-
nent for FLC regulation (Figure 2D(v)): in cells with the lowest protein levels, these levels were similar 
in fca- 3 and in Ler, again supporting a digital OFF state. Furthermore, we could see a mix of distinct 
ON and OFF cells by enhancing the fca- 3 images to increase the Venus intensity to a similar level 
as in fca- 1. By contrast, in fca- 1 all cells were ON, whereas in Ler, cells appeared OFF even with an 
equivalent adjustment (Figure 2D(iv), Figure 2—figure supplement 3). We could also infer a poten-
tially heritable component in the ON/OFF states as short files of ON cells could be observed in fca- 3 
(Figure 2D(v), Figure 2—figure supplement 3, yellow boxes). In fca- 4, we observed similar short ON 
files (Figure 2—figure supplement 3, yellow boxes), suggesting that this is a general feature that is 
not specific to fca- 3. Overall, our results support a combination of analog and digital regulation for 
FLC: in Ler most cells were digitally OFF, in fca- 1 all cells were digitally ON, while in fca- 3 a fraction of 
cells were OFF, but for those cells that were ON, the level of FLC expression was reduced in an analog 
way relative to fca- 1.

FLC RNA and protein are degraded quickly relative to the cell cycle 
duration
Our results strongly pointed toward a digital switching component being important for FLC regu-
lation by the autonomous pathway, but with an analog component too for those loci that remain 
ON. A study in yeast previously reported on the expected RNA distributions for the two cases 
of analog and digital control (Goodnight and Rine, 2020). An important additional consider-
ation when interpreting the analog/digital nature of the regulation concerns the half- lives of the 
mRNA and protein. In a digital scenario, long half- lives (Rahni and Birnbaum, 2019) are expected 
to broaden histograms of mRNA/protein levels due to the extended times needed for mRNA/
protein levels to increase/decrease after state switching. This could lead to a possible misinter-
pretation of analog regulation, for example, if intermediate levels of mRNA/protein remain in OFF 
cells that are descended from ON cells. In contrast, short half- lives will lead to clearer bimodality. 
Furthermore, what might look like a heritable transcription state could also appear due to slow 
dilution of a stable protein, as observed in other cases (Kueh et al., 2013; Zhao et al., 2020). We 
therefore needed to measure the half- lives of the mRNA and protein to interpret our observations 
appropriately.

FLC mRNA has previously been shown to have a half- life of approximately 6 hr (Ietswaart et al., 
2017) in a different genotype (ColFRI) to that used here. We measured the half- lives of both RNA 
and protein in our highly expressing FLC line, fca- 1 (Figure 3—figure supplement 1). The RNA 
half- life measurement used actinomycin D treatment, inhibiting transcription, whereas the protein 
measurement used cycloheximide, arresting protein synthesis. The half- lives were then extracted 
from the subsequent decay in mRNA/protein levels. We found that both degradation rates were 
quite fast, with half- lives of ~5 and ~1.5 hr, respectively, for the mRNA and protein (Figure 3—
figure supplement 1). These timescales are short compared to the cell cycle duration, here of ~1 d 
(Rahni and Birnbaum, 2019), let alone compared to the timescale of development. Therefore, slow 
degradation is unlikely to be the cause of the apparent analog regulation and of the observed heri-
tability seen in our root images. Furthermore, the short protein half- life indicates that any potential 
effects from growth causing dilution, and thus a reduction in protein concentrations, will also be 
small.

https://doi.org/10.7554/eLife.79743
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Switching of FLC loci to an OFF state over time in fca-3
To understand the nature of potential digital switching, it is important to determine whether switching 
occurs from ON to OFF, OFF to ON, or in both directions. If most loci are switching one- way only, 
in either direction, this would lead to a gradual change of overall FLC expression over time. Alter-
natively, two- way switching or non- switching in at least a few cells would be necessary to have a 
constant concentration of FLC mRNA/protein over time. These considerations therefore raised the 
related question of whether cell population- level silencing is at steady state at the time of observation 
or whether we are capturing a snapshot of a transient behavior, with cells continuing to switch over 
developmental time.

To test if FLC expression is changing over time, we sampled FLC expression in the intermediate 
fca- 3 mutant, as well as fca- 1 and Ler, at 7, 15, and 21 d after sowing. This experiment revealed a 
decreasing trend in fca- 3 and Ler (Figure 3A), which did not seem to be due to a change in FCA 
expression over the same timescale (Figure 3B). This was particularly clear when comparing FLC and 
FCA in fca- 3 between 7 and 15 d: since FCA is a repressor of FLC expression, a decrease in both 
suggests that FCA is not the cause of the FLC expression decrease. We therefore concluded that the 
most likely explanation was primarily one- way switching from an otherwise heritable FLC ON state, to 
the heritable silenced OFF state occurring digitally and independently at individual loci in fca- 3 and 
Ler. We note that Ler was already mostly OFF at the starting time of 7 d, and so the significant but very 
slow rate of decrease (slope: –0.038, p- value:  4.8 · 10−6  , Figure 3A; slope: –0.023, p- value: 0.0030, 
Figure 3—figure supplement 2A) is interpreted as a small number of remaining ON cells continuing 
to switch OFF. However, at the later timepoints Ler had transitioned to flowering and so no biological 
conclusions were drawn from the FLC dynamics at those times in this genotype. Rather, this data was 
used as a negative control for the root imaging experiments below. In fca- 1 a downward trend was not 
statistically significant (p=0.12) in Figure 3A, likely due to the wide error bars at the first timepoint. 
In another experiment, however (Figure 3—figure supplement 2A), there was slow but significant 
decrease also in fca- 1, suggesting that there might be some cells switching OFF also in that case, but 
more slowly compared to fca- 3.

By imaging FLC- Venus, we observed that the fraction of ON cells was indeed decreasing in fca- 3, 
over the time course (Figure 3C and D, Figure 3—figure supplement 3). In fact, after 21 d the pattern 
of ON/OFF cells in the fca- 3 roots was very similar to that of plants that had experienced cold leading 
to partial cell population- level FLC shutdown, with the majority of cell files being stably repressed, 
but still with some long files of cells in which FLC was ON (compare timepoint 21 in Figure 3C and 
figures in Berry et al., 2015). It remains possible that there is a low level of switching in the opposite 
direction, from OFF to ON, in fca- 3 (see below). The other genotypes did not show this statistically 
significant decreasing trend in the FLC- Venus data. In fca- 1, the fraction of ON cells did not show a 
consistent pattern, while in Ler, the fraction of ON cells remained essentially constant (at a very low 
level). These results differed from the qPCR data (see above), suggesting in Ler, for example, that 
epidermis cells in the root tip could switch off early, while a small number of ON cells remain in other 
tissues of the plant that continue to switch off, thereby explaining the slow decrease in the qPCR 
experiment (Figure 3A, Figure 3—figure supplement 2A).

We also examined whether the change over time in fca- 3 could be due to an analog change in 
the expression of the ON cells rather than a decreasing number of ON cells. By setting a threshold at 
an intensity of 1, we look at only the tail of the ON cell distribution (normalized by the total number 
of these cells in each condition) (Figure 3—figure supplement 4). We see that high- intensity cells 
are still present at later times and do not show a reduction in intensity relative to earlier timepoints. 
This finding is consistent with digital regulation: a decrease in the number of ON cells, but with all 
remaining ON cells expressing FLC at similarly high levels over time. Overall, our results in fca- 3 are 
consistent with progressive digital switching of FLC loci, primarily in the ON- to- OFF direction.

Mathematical model incorporating digital switching can recapitulate 
the FLC distribution over time in fca-3
We finally developed a mathematical model for FLC ON/OFF state and protein levels in the root 
(Figure  4A, Figure  4—figure supplement 1, ‘Materials and methods’) to test if the analog and 
digital components inferred from the data were sufficient to reproduce the experimentally observed 
patterns. The model incorporated digital FLC state switching embedded in simulated dividing cells 

https://doi.org/10.7554/eLife.79743
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Figure 3. Experimental observation of gradual FLC silencing. (A) Timeseries of FLC expression in fca mutant 
alleles transformed with the FLC- Venus construct. Expression is measured by qPCR in whole seedlings relative 
to the house- keeping gene index (geometric mean of PP2A and UBC). Error bars show SEM of n = 3 biological 
replicates. Statistical tests: samples were excluded as outliers based on Grubbs’ test with alpha = 0.05. Linear 

Figure 3 continued on next page
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in the root. We allowed the FLC state in the model to switch either ON to OFF, or OFF- to- ON. We 
focused on modeling the switching dynamics and used distributions for the protein levels in cells with 
two ON loci, one ON and one OFF, and two OFF empirically fitted to our data (Figure 4A, ‘Materials 
and methods’). Possible effects from cell size and burstiness are incorporated into these empirical 
distributions implicitly through this fitting.

In the plant root, there is a mix of dividing and differentiated cells. Our experimental observations 
capture cells primarily in the division zone of the root, but even within this region, cell cycle times are 
not the same in all cells (Rahni and Birnbaum, 2019). To generate the model cell files, we used cell 
cycle lengths based on the literature (Rahni and Birnbaum, 2019).

With these assumptions, our model could be fit (‘Materials and methods’) to replicate the observed 
pattern of increasing OFF cells in fca- 3 roots, as well as the quantitative histograms for protein levels 
in fca- 3 (Figure 4B). In terms of the switching, we found the best fit where the OFF- to- ON rate is over 
10 times slower than the ON- to- OFF rate (Figure 4B, Supplementary file 1), supporting predomi-
nantly one- way switching from an analog into a digitally silenced state. In addition, the model could 
capture the longer files present in the later timepoints in the data (T21, Figure 3C, Figure 4—figure 
supplement 1), but unlike in the data these were not more prevalent at later timepoints than earlier. 
Therefore, the altered prevalence of this effect in the data may suggest additional developmental 
influence on the heritability of the ON/OFF state at later times in the plant. Overall, however, the 
model can faithfully recapitulate the developmental dynamics of FLC in fca- 3.

Discussion
In this work, we have uncovered a combination of analog and digital transcriptional regulation for 
the gene FLC: analog regulation arises through the autonomous pathway, as illustrated by the fca 
mutants, before digital switching into a heritable silenced state. The silenced state is Polycomb 
dependent, given the similarity of our data to the vernalized state and the role of the Polycomb mark 
H3K27me3 in silencing FLC in wildtype Ler and Col- 0 in the absence of cold treatment. In Col- 0, in a 
mutant of the PRC2 component and H3K27 methyltransferase, clf, it has also been observed that FLC 
is upregulated and H3K27me3 reduced (Shu et al., 2019), though this is only a partial effect due to 
the presence of an active SWN, another PRC2 H3K27 methyltransferase. Based on previous studies 
on the interplay between transcription and PRC2 silencing (Beltran et al., 2016; Berry et al., 2017; 
Holoch et al., 2021; Lövkvist et al., 2021), we propose that the rate of digital Polycomb silencing 
is dependent on the transcription levels. These transcription levels are genetically controlled and 

regression on timeseries for each genotype. Slope for fca- 3 = −0.13, p- value= 2.0 · 10−4 ; slope for fca- 1 = −0.11, 
p- value=0.12; slope for Ler = −0.038, p- value= 4.8 · 10−6 . (B) Timeseries of FCA expression, otherwise as in 
(A). Statistical tests: samples were excluded as outliers based on Grubbs’ test with alpha = 0.05. Linear regression 
on timeseries for each genotype. Slope for fca- 3 = 0.021, p- value=0.22; slope for fca- 1 = 0.032, p- value= 3.8 · 10−4 ; 
slope for Ler =  1.1 · 10−3 , p- value=0.84. (C) Representative images of fca- 3 roots by confocal microscopy. FLC- 
Venus intensity indicated by color map; gray shows the PI channel. Same settings were used for imaging and 
image presentation. Scale bar, 50  μm. (D) Histograms of FLC- Venus intensity per cell at each timepoint. The means 
and medians of the distributions are indicated in each panel. For Ler: 7 d, n = 1121 cells from 10 roots (three 
independent experiments); 15 d, n = 1311 cells from 9 roots (two independent experiments); 21 d, n = 1679 cells 
from 12 roots (three independent experiments). For fca- 3: 7 d, n = 2875 cells from 24 roots (three independent 
experiments); 15 d, n = 3553 cells from 23 roots (three independent experiments); 21 d, n = 3663 cells from 21 
roots (three independent experiments). For fca- 1: 7 d, n = 1022 cells from 9 roots (three independent experiments); 
15 d, n = 1770 cells from 12 roots (three independent experiments); 21 d, n = 2124 cells from 12 roots (three 
independent experiments). Statistical tests: linear regression on timeseries for each genotype. Slope for fca- 3 = 
−0.0077, p- value= 4.0 · 10−46 ; slope for fca- 1 = 0.018, p- value=0.00064; slope for Ler = -0.00015, p- value=0.44.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Degradation rate of FLC mRNA and protein levels.

Figure supplement 2. FLC and FCA expression in whole seedlings over time .

Figure supplement 3. FLC- Venus time- course replicates in fca alleles.

Figure supplement 4. Experimental intensity of FLC- Venus in ON cells does not change over time in fca- 3.

Figure 3 continued

https://doi.org/10.7554/eLife.79743
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Figure 4. Mathematical model captures FLC regulation. (A) Diagram of mathematical model. Individual FLC gene copies can be ON or OFF, such that 
a cell can be in one of three states depending on the combination of ON and OFF gene copies within it (ON/ON, ON/OFF, OFF/OFF). Venus intensity 
(corresponding to amount of protein) within a cell was sampled from the distributions shown (described in ‘Materials and methods’ section), depending 
on the cell state. The means of the distributions are indicated in each panel. (B) Histograms of active FLC copies per cell (top) and Venus intensity per 
cell (bottom) at the indicated timepoints. Model histograms are plotted with black lines around empty bars and experimental data is shown as filled gray 
histograms with no outline. The means and medians of the distributions are indicated in each panel for the data (solid lines and matching color text) and 
the model (dashed lines and matching color text). Model simulated 1000 fca- 3 cell files and histograms shown exclude bottom four cells of each file as 
cells near the QC are also not included in the imaging.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Modeling FLC regulation in clonal cell files in the root.

https://doi.org/10.7554/eLife.79743
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constitute analog regulation since the pathways governing this process are capable of graded expres-
sion control. Analog regulation is set within each genotype, as illustrated by the fca mutants, before 
possible digital switching at each gene copy into a heritable silenced OFF state.

In the case of Ler, low analog transcription is not sufficient to significantly oppose silencing and 
so the switch occurs before our first experimental measurements at 7 d. In fca- 1, the switch does not 
occur at all, prevented by high analog transcription in that genotype. However, for fca- 3, with inter-
mediate analog FLC expression, the digital switching occurs slowly and so can be observed in our 
timeseries experiments, underlining a clear temporal separation of analog and digital transcriptional 
control. In this way, both analog and digital regulation are combined at FLC, with the timescale for 
switching between these states controlled by the strength of initial analog transcription. In fca- 3, such 
switching to the OFF state causes a gradual reduction in FLC expression at the whole plant level. 
Furthermore, we emphasize that there may be additional developmentally regulated processes occur-
ring at FLC, in addition to the constant rate of switching. This possibility is underscored by the model 
not completely recapitulating the long cell files we observe experimentally at the 21- day timepoint.

A prolonged environmental cold signal can also result in a switch from cells expressing FLC to 
nonexpressing OFF cells, a process that occurs independently at each gene copy of FLC (Berry 
et al., 2015). These ON/OFF states are then maintained through cell divisions leading to epigenetic 
memory. This cold- dependent silencing shows only digital characteristics, with highly FLC- expressing 
cells present both before and after intermediate periods of cold, albeit in a lower proportion after. 
Here, we have addressed how FLC is regulated in the absence of cold and show that a similar mode 
of regulation occurs. Furthermore, at least in the case of fca- 3 with initially intermediate transcription 
levels, silencing at the cell population level also happens gradually over many cell cycles, like the 
behavior over prolonged periods of cold. Moreover, images of roots at 21 d after sowing without cold, 
with fluorescently labeled FLC, are visually strikingly like images of vernalized roots, where in both 
cases we find whole files of either all ON or all OFF cells. These comparisons suggest similarities in the 
molecular characteristics of the Polycomb silenced state at FLC generated either with or without cold 
treatment. We hypothesize that in the absence of active Polycomb the fca alleles would display only 
analog differences, without the possibility of digital silencing.

In this work, we have focused on the early regulation of FLC by analog and digital pathways, rather 
than the effect of these on flowering. However, natural variation at FLC largely affects expression as 
the plants are germinating in autumn (Hepworth et al., 2020). The analog component of transcrip-
tional regulation could therefore have widespread ecological relevance. For example, the high FLC 
genotype Lov- 1, a natural accession from Sweden, has higher FLC expression upon germination in 
early autumn compared to ColFRI (Coustham et al., 2012). The analog component could be domi-
nating in Lov- 1, with all cells having a higher ON level. Consistent with this, Lov- 1 also has lower levels 
of the Polycomb mark H3K27me3 at the FLC locus, with potentially few or no OFF cellsn the warm 
(Qüesta et al., 2020).

The main antagonist of the autonomous pathway is the FRIGIDA gene, a transcriptional activator 
of FLC (Figure 1B), which was not present in the lines used in this study. In fact, it is the antagonism 
between FRI and the autonomous pathway that determines the starting FLC levels, and so we would 
expect that FRI controls the analog component directly and digital component indirectly. For future 
work, it would therefore be interesting to investigate transcriptional responses in an FRI allelic series. 
This could be particularly important because natural accessions show mutations in FRI rather than in 
autonomous pathway components, possibly because the autonomous components regulate many 
more target genes.

Overall, our work has revealed a combination of both analog and digital modes of regulation at 
Arabidopsis FLC before cold, with analog preceding digital. We further propose it is the strength of 
the initial analog, autonomous pathway transcriptional level that controls the timescale for the switch 
into the subsequent digital, Polycomb silenced state. Future work is needed to address how this 
integrated analog and digital regulation affects flowering time, including further exploration of this 
pathway in leaves and the use of cell- tracking to capture the switching process in action.

https://doi.org/10.7554/eLife.79743
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Materials and methods
Plant material
fca alleles
fca- 3 and fca- 4 are the result of X- ray mutagenesis, while fca- 1 was induced by EMS (Koornneef et al., 
1991). For Ler, fca- 3 and fca- 1, the transcript levels of FCA determined with a primer pair binding 
between exons 16 and 19 are comparable (Figure 3B). The primer pair used is specific to the gamma 
isoform in a wildtype context, which so far has been the only FCA isoform known to generate a func-
tional protein (Macknight et al., 2002). The fca- 1 C- T point mutation generates an in- frame early stop 
codon (Macknight et al., 1997), whereas fca- 3 is a splice site mutation from G to A at the 3′ splice 
site of intron 6 (Chr4:9,210,672). The closest predicted weak alternative splice site (Chr4:9,210,582; 
90 bp) is within intron 7, the next constitutive acceptor splice site of intron 7 (Chr4:9,210,518; 154 bp 
downstream). This suggests that either intron 6 is not spliced out or exon 7 is skipped. Using a C- ter-
minal polyclonal serum antibody, no protein was detected as previously shown in either fca- 3 or fca- 1 
(Macknight et al., 2002). However, more characterization is needed to determine the exact protein 
that is made in fca- 3. fca- 4 contains a breakpoint within intron 4 of FCA leading to a chromosomal 
rearrangement, with the 3′ fragment of FCA fused to another gene, leading to partial protein (Page 
et al., 1999). fca- 3 and fca- 4 were empirically selected as intermediate mutants for this study based 
on their effects on FLC levels and on flowering time (Figure 1C, Figure 1—figure supplement 1).

Generation of FLC-Venus transgenic lines
pSLJ- 755I6 FLC- Venus contains a 12.7 kb genomic fragment containing FLC from the Col- 0 accession 
with the Venus coding sequence inserted into the NheI site of FLC exon 6, as previously described 
(Berry et al., 2015). This FLC- Venus construct was transformed into Ler using Agrobacterium tume-
faciens and single- copy transgenic lines were selected. We crossed plants that were homozygous for 
FLC- Venus with the mutant genotypes (fca- 1, fca- 3, and fca- 4) to obtain F2 plants homozygous for 
both FLC- Venus and fca- 1, fca- 3, or fca- 4, by PCR- based genotyping (primers in Supplementary file 
2) and copy number analysis. fca- 4 genotyping was performed using specific forward primers for the 
fca- 4 mutation (600 bp) and WT (720 bp). The fca- 3 mutation introduces a recognition sequence for 
the restriction enzyme BglII, generating fragments of 87 bp and 195 bp (fca- 3) compared to 282 bp 
(WT). The fca- 1 mutation generates an additional restriction enzyme recognition site for MseI gener-
ating fragments of 157 bp, 125 bp, 18 bp (fca- 1), and 175 bp, 125 bp for WT. F3 plants derived from 
these were used for all experiments. We verified by qPCR that FLC- Venus showed similar changes in 
expression as endogenous FLC in the fca- 1, fca- 3, and fca- 4 backgrounds (Figure 1—figure supple-
ment 1).

Plant growth
Seeds were surface sterilized in 5% v/v sodium hypochlorite for 5 min and rinsed three times in sterile 
distilled water. Seeds were stratified for 2  d at 4°C in Petri dishes containing MS media without 
glucose. The plates were placed vertically in a growth cabinet (16 hr light, 22°C) for 1 wk.

Gene expression analysis
For gene expression timeseries, 20+ whole seedlings were harvested at each timepoint (7-, 15-, and 
21- day- old plants). Plant material was snap frozen with liquid nitrogen, ground, and RNA was extracted 
using the phenol:chloroform:isoamyl alcohol (25:24:1) protocol (Yang et al., 2014). RNA was purified 
with the TurboDNase (Ambion) kit to remove DNA contamination and reverse transcribed into cDNA 
using SuperScript IV Reverse transcriptase (Invitrogen) and RT primers for genes of interest. Gene 
expression was measured by qPCR, and data was normalized to PP2A and UBC, unless specified 
otherwise. Primer sequences are summarized in Supplementary file 2.

Primer pairs:

FLC spliced: FLC_spliced_F / FLC_spliced_R
FLC unspliced: SDB_FLC_4548_F / SDB_FLC_4701_R
FLC- Venus spliced: FLC_spliced_F / SDB_FLC- VENUS_ex6_cDNA_744_R
FLC- Venus unspliced: SDB_FLC_4548_F / SDB_FLC- VENUS_ex6_cDNA_744_R

https://doi.org/10.7554/eLife.79743
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Actinomycin D treatment
For actinomycin D (ActD) experiments, 6- day- old plants were initially germinated in non- supplemented 
media and were transferred to new plates containing ActD. The plants were kept in darkness during 
ActD treatment. Stock solution of ActD (1 mg/mL dissolved in DMSO) was added to molten MS media 
to a final concentration of 20 μg/mL. ActD was obtained from Sigma (Cat# A4262- 2MG).

Cycloheximide (CHX) treatment
FLC- Venus protein stability was assayed with the de novo protein synthesis inhibitor cyclohexi-
mide (C1988, Sigma- Aldrich) following the procedures in Zhao et al., 2020. Briefly, 7- day- old fca- 1 
seedlings carrying the FLC- Venus transgene were treated in liquid MS medium containing 100 μM 
CHX. The seedlings were sampled after 0, 1.5, 3, 6, 12, and 24 hr of treatment. A nontreatment 
control is also included, in which seedlings were soaked in liquid MS medium without the inhibitor 
CHX for 24 hr. Approximately 1.0 ng seedlings were ground to a fine powder with Geno/Grinder. 
Total protein was extracted with 1.5 mL buffer (50 mM Tris- Cl pH 8.0, 15 4 mM NaCl, 5 mM MgCl2, 
10% glycerol, 0.3% NP- 40, 1% Triton- 100, 5 mM DTT, and protease inhibitor). Then each sample 
was cleaned by centrifugation at 16,000 × g at 4°C for 15 min, 50 μL total protein was taken as 
input before enrichment with magnetic GFP- trap beads (GTMA- 20, Chromo Tek). The input samples 
were run on a separate gel and used as a processing loading control for the starting level for each 
sample. The enriched FLC- Venus protein was detected by western blot assay with the antibody 
anti- GFP (11814460001, Roche). Signals were visualized with chemiluminescence (34095, Pierce) 
with a secondary antibody conjugated to horseradish peroxidase (NXA931V, GE Healthcare). The 
chemiluminescence signal was obtained by the FUJI Medical X- ray film (4741019289, FUJI). Quan-
tification was performed with ImageJ after the films were scanned with a printer scanner (RICOH). 
Ponceau staining was performed with commercial Ponceau buffer (P7170, Sigma- Aldrich) and used 
as the processing controls. All of the western blot assays were performed with equal weight of 
whole seedlings.

smFISH
smFISH was carried out on root squashes as described by Duncan et al., 2017. Briefly, root tips from 
7- day- old seedlings were cut using a razor blade and placed into glass wells containing 4% para-
formaldehyde and fixed for 30 min. Roots were then removed from the fixative and washed twice 
with nuclease free 1× PBS. Several roots were then arranged on a microscope slide and squashed 
between the slide and coverslip. This procedure is required to generate a monolayer of cells, thereby 
decreasing the background, which is necessary to detect the intrinsically low signals from single mole-
cules of mRNA (Duncan et al., 2016). Slides were submerged (together with the coverslips) for a few 
seconds in liquid nitrogen until frozen. The coverslips were then removed, and the roots were left to 
dry at room temperature for 30 min.

Tissue permeabilization and clearing were achieved by immersing sequentially the samples in 
100% methanol for 1 hr, 100% ethanol for 1 hr, and 70% ethanol for a minimum of 1 hr. The ethanol 
was left to evaporate at room temperature for 5 min and slides were then washed with Stellaris RNA 
FISH Wash Buffer A (Biosearch Technologies; Cat# SMF- WA1- 60). 100 μL of hybridization solution 
(containing 10% dextran sulfate, 2× SSC, and 10% formamide), with each probe set at a final concen-
tration of 125 nM, was then added to each slide. The slides were left to hybridize at 37°C overnight 
in the dark.

The hybridization solution containing unbound probes was pipetted out the following morning. 
Each sample was then washed twice with Stellaris RNA FISH Wash Buffer B (Biosearch Technologies; 
Cat# SMF- WB1- 20) with the second wash left to incubate for 30 min at 37°C. 100 μL of the nuclear 
stain DAPI (100 ng/mL) was then added to each slide and left to incubate at 37°C for 10 minutes. 
Slides were then quickly washed with 2× SSC. 100 μL GLOX buffer minus enzymes (0.4% glucose in 
10 mM Tris, 2× SSC) was added to the slides and left to equilibrate for 2 min. Finally, this was removed 
and replaced with 100 μL of GLOX buffer (containing 1 μL of each of the enzymes glucose oxidase 
[#G0543 from Sigma] and catalase [#C3155 from Sigma]). The samples were then covered by 22 mm 
× 22 mm No. 1,5 coverslips (VWR), sealed with nail varnish, and immediately imaged.

https://doi.org/10.7554/eLife.79743
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smFISH probe synthesis
We used the online program Stellaris Probe Designer version 2.0 from Biosearch Technologies to 
design probe sequences for FLC- Venus. For probe sequences, see Supplementary file 3 for FLC- 
Venus. For unspliced PP2A and for FLC exonic, see Duncan et al., 2016 (reproduced in Supplemen-
tary file 4).

Image acquisition
The smFISH slides were imaged using a Zeiss LSM800 inverted microscope, with a 63x water- 
immersion objective (1.20 NA) and Microscopy Camera Axiocam 503 mono. The following wave-
lengths were used for fluorescence detection: for probes labeled with Quasar570, an excitation filter 
533–558 nm was used and signal was detected at 570–640 nm; for probes labeled with Quasar670, 
an excitation filter 625–655 nm was used and signal was detected at 665–715 nm; for DAPI, an exci-
tation filter 335–383 nm was used and signal was detected at 420–470 nm; for GFP, an excitation filter 
450–490 nm was used and signal was detected at 500–550 nm.

For the FLC- Venus protein level quantification of root samples, optical sections were collected with 
a Zeiss LSM780 microscope equipped with a Channel Spectral GaAsP detector with a 20x objective 
(0.8 NA). For z- stacks, the step size was 0.5 μm with a pinhole aperture of 1.5 AU. The overall Z size 
varied between 45 and 75 slices depending on the orientation of the root. Roots from FLC- Venus 
lines were immersed in 1 μg/mL propidium iodide (PI, Sigma- Aldrich, P4864) to label the cell wall. For 
visualization of roots stained with PI, an excitation line of 514 nm was used, and signal was detected 
at wavelengths of 611–656 nm. For observation of Venus signal, we used a 514 nm excitation line and 
detected from 518 to 535 nm. To allow comparison between treatments, the same laser power and 
detector settings were used for all FLC- Venus images.

In FLC- Venus time- course imaging of epidermal root meristems, the Leica SP8X or Stellaris 8 were 
used with 20x multi- immersion objective (0.75 NA). The Argon (SP8X) or OPSL 514 (Stellaris 8) lasers 
were used at 5% to excite FLC- Venus and PI at a 514 nm wavelength in bidirectional mode (PI signal 
was used for set- up). Venus was detected between 518 and 550 nm with the HyD SMD2 detector in 
photon counting mode; PI was detected at 600–675 nm. Epidermal images were obtained in photon- 
counting mode with laser speed 200, line accumulation of 6 (pixel dwell time of 2.43 µs), and a Z- step 
size of 0.95 µm and a pinhole size of 1 AU. For representative images, these were projected such 
that one single middle slice from the PI channel was used to show the cell outline, onto which 10 
slices of FLC- Venus channel were average intensity projected (T7, LSM780 imaging, Figure 2) or sum 
projected for time- course imaging (T7/T15/T21, SP8X imaging, Figure 3). The dynamic range of the 
FLC- Venus signal was pushed from 0 to 255 to 5–22 (for LSM780 images, Figure 2) and 30–255 (for 
SP8X images, Figure 3) for all images apart from where enhanced. In enhanced fca- 3/Ler images, the 
dynamic range was further pushed to 5–10 (for LSM780 images, Figure 2) and to 30–160 (for SP8X 
images, Figure 3) to obtain a similarly strong signal as observed in fca- 1.

For fca- 4 FLC- Venus imaging, the Zeiss LSM880 was used with a 25x multi- immersion objective 
(0.8 NA). The Argon laser at 514 nm and 3% was used for excitation of FLC- Venus and PI, with a 
detection range between 520–550 nm and 600–650 nm, respectively. Z- stacks were taken covering 
the epidermis, with a step size of 1 µm. In the top two images, the signal was line- averaged four times; 
for the bottom image, no averaging was performed. For representative images (Figure 2—figure 
supplement 3), five slices of FLC- Venus covering the nucleus were average projected and merged to 
the middle PI slice. FLC- Venus signal was enhanced to a similar intensity level as in fca- 1 by shifting 
the dynamic range of the FLC- Venus signal from 0 to 255 to 16–120.

FLC- Venus imaging of young leaves was performed on 9- day- old seedlings. Seedlings were 
dissected by removing the cotyledons and keeping only the young leaves and shoot meristem. Young 
leaves were fixed in 4% paraformaldehyde at 4°C overnight. The samples were then treated with 
100% methanol and 100% ethanol twice for 15 min each. ClearSee (Kurihara et al., 2015) solution 
was then used to clear the samples for 1 wk. Next, two washes were carried out in 1× PBS. Samples 
were embedded in a hydrogel according to Gordillo et al., 2020. After rinsing with 1× PBS, samples 
were stained with Renaissance 2200 solution for 15 mins at room temperature. Slides were mounted 
in vectashield. FLC- Venus levels of the leaf images were quantified manually using ImageJ. The mean 
fluorescence intensity of a circular region covering the nucleus in each cell was measured, and the 
mean background of each image was subtracted.

https://doi.org/10.7554/eLife.79743
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Image analysis
FISH analysis
Quantification of FISH probes took place in two stages:

1. Identification of probe locations in the whole 3D image, excluding the top and bottom z- slice 
from each z- stack due to light reflection at the plant cell wall.

2. Assignment of identified probes to specific cells via segmentation of the image into regions.

To detect probes, a white tophat filter was applied to the probe channel, followed by image normal-
ization and thresholding. Individual probes were then identified by connected component segmenta-
tion. The centroids of each segmented region were assigned as the probe’s location.

Images were manually annotated with markers to indicate positions of nuclei and whether cells 
were fully visible or occluded. A combination of the visibility markers and nuclei were used to seed a 
watershed segmentation of the image, thus dividing the image into regions representing individual 
cells. Probes within each region were counted to generate the per- cell counts. Occluded cells were 
excluded from the analysis (probe counts for those regions were ignored). Segmentation and probe 
detection parameters were optimized, with different thresholds used for different replicates and 
genotypes. This was necessary due to the difference in signal and background of the probes in each 
of these cases.

Visual inspection of smFISH images revealed high rates of false positive detection in Ler, likely 
due to very low levels of expression. In the absence of real signals, unspecific signals can be counted 
through our automated quantification pipeline as a consequence of unspecific probe binding or 
general background. When expression levels are high, this effect is negligible, but when expres-
sion levels are very low, it can become significant. Therefore, differences at the cellular mRNA level 
between fca- 3 and Ler are likely higher than the ones presented in Figure 2C. The similar count range 
observed in Ler and fca- 3 ‘ON’ cells (Figure 2—figure supplements 1C and 2) suggests that there 
is an overlap between the distribution of real ON cells in fca- 3 and background signal (in both Ler 
and fca- 3). However, the higher frequency of such cells in fca- 3 compared to Ler confirms that these 
are not simply the result of background measurements. This is reflected in the significantly different 
distribution of Ler and fca- 3 cells in Figure 2C. Furthermore, visual inspection of the images confirmed 
that in fca- 3 we can confidently detect real signals (higher than in Ler and lower than fca- 1), confirming 
the analog component.

Custom code is available at https://github.com/JIC-Image-Analysis/fishtools (copy archived at 
Hartley and Antoniou- Kourounioti, 2022a).

FLC-Venus fluorescence intensity in roots
To measure per- cell FLC- Venus intensities in roots, we developed a custom image analysis pipeline 
to extract cell structure information from the PI cell wall information and use this to measure per- cell 
nuclear fluorescence. Images were initially segmented using the SimpleITK (Beare and Lehmann, 
2006) implementation of the morphological watershed algorithm. Reconstructed regions touching 
the image boundaries and those below a certain size threshold were removed. Segmentations were 
then manually curated to merge over- segmented regions and assign file identities to the resulting 
segmented cells. This curation was performed using custom software, able to merge segmented cells, 
resegment cells from specified seeds, and split cells along user- defined planes. To approximate the 
nuclear position, we fitted a fixed size spherical volume of 15 voxels radius to the point of maximal 
FLC- Venus intensity in each reconstructed cell (Figure  2—figure supplement 5). Cells where the 
sphere overlap fraction (between sphere and cell) was less than 55% were excluded from the analysis. 
Per- voxel mean FLC- Venus intensities for each cell were then calculated by dividing the summed 
intensity within the intersection of the spherical region and the cell, by the fixed sphere volume. A 
background correction was performed by the following calculation to estimate the FLC- Venus inten-
sity in the nucleus (‘sphere_filled,’ also see Supplementary file 5): sphere_filled = (mean_in_sphere / 
overlap_fraction) - mean_outside_sphere.

The ‘mean_in_sphere’ intensity was first divided by the ‘overlap_fraction,’ the fraction of the sphere 
which overlaps the cell, to correct for regions of the sphere outside the cell. The mean intensity of 
the region outside the sphere (‘mean_outside_sphere’), which is the background signal, was then 
subtracted from this overlap- corrected sphere intensity. This background subtraction is also the cause 

https://doi.org/10.7554/eLife.79743
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for the negative values in a fraction of OFF cells where the signal inside and outside the sphere are 
both background noise. Because of the sphere’s prescribed size, in some cases even the brightest 
sphere inside a cell will have lower intensity than the remaining cell (e.g., by necessarily including the 
darkest region of the cell), leading to these negative values.

Custom code for initial segmentation and Venus intensity measurement is written in the Python 
language (Python Software Foundation, 2023), and is available at https://github.com/JIC-Image- 
Analysis/root_measurement (copy archived at Hartley and Antoniou- Kourounioti, 2022b).

The code for the segmentation curation software is available at https://github.com/jfozard/segcor-
rect (copy archived at Fozard, 2022).

Mathematical model
We constructed a model for FLC chromatin states and protein levels in the root (Figure 4A) and used 
it to simulate root cell files and generate simulated protein- level histograms (Figure 4B, Figure 4—
figure supplement 1).

The root was represented as a collection of cell files (such as the 12 representative cell files shown 
in Figure 4—figure supplement 1), and 1000 cell files were simulated in total. Each cell file consisted 
of a list of 30 cells (Supplementary file 1), ordered from the root tip toward the rest of the plant. This 
region was intended to approximately match the division zone and imaging region. Cells were able 
to divide, giving rise to two daughter cells and pushing cells that were further from the tip upward. 
Cells escaping the 30 cell limit were removed from the simulation. Cells in a given file were clonally 
related to each other, and eventually all originated from divisions of the ‘initial cells’ (the first cells of 
the cell file, which are adjacent to the quiescent center [QC] of the root apical meristem). Each cell 
was described by its index along the cell file, its digital chromatin state, its protein concentration 
(expressed as the Venus intensity to match experimental observations), and its remaining cell cycle 
duration.

With regard to the digital chromatin state, a cell could be in an ON/ON (both FLC copies in the 
active chromatin state), ON/OFF (one active and one inactive), or OFF/OFF state (both inactive). All 
cells at the start of the simulation at 0 d are in the ON/ON configuration. The model also included 
a digital switching process between these cell states. Based on our data, we expected switching to 
occur at least primarily from a heritable ON state to a heritable OFF state. However, we also simulated 
switching from OFF to ON in the model to test if we could explain the data also in that case. At each 
timestep and depending on its digital chromatin state, a single FLC copy could switch from an ON 
to an OFF state with probability  pOFF  , or from an OFF to an ON state with probability  pON   (values in 
Supplementary file 1).

In order to compare the simulated cell states against the FLC- Venus data, we processed the model 
outputs using an additional step. This step gave each ON FLC copy an associated protein level, which 
was sampled from a log- normal distribution with parameters:  µON,σ2

ON  . The background within each 
cell was sampled from a log- normal distribution with parameters:  µOFF,σ2

OFF . These four parameters 
and the switching probabilities  pOFF  and  pON   were manually fitted to the experimental Venus distri-
butions for fca- 3 at 7, 15, and 21 d (Figures 3D and 4, Supplementary file 1) by adjusting the param-
eters and visually inspecting until the model fits were judged to be satisfactory. Protein levels for each 
cell, according to the combination of ON and OFF FLC copies (Figure 4A), were given by appropriate 
combinations of random variables, specifically,

• for ON/ON cells:  2eXON + eXOFF  (cell background and signal from two ON copies);
• for ON/OFF cells:  eXON + eXOFF  (cell background and signal from one ON copy); and
• for OFF/OFF cells:  eXOFF  (only the cell background),

where 
 
XON ∼ N

(
µON,σ2

ON

)
 
 and 

 
XOFF ∼ N

(
µOFF,σ2

OFF

)
 
. The noisy nucleus background signal 

( XOFF ) was assumed to be higher than any real signal originating from OFF FLC copies. The log- 
normal distribution was selected for simplicity and automatic non- negativity, and we found empirically 
that it gave reasonable fits.

The duration of the cell cycle of each cell was determined by the cell’s position along the cell file at 
the time of the division that created it. These cell cycle times according to position were based on the 
literature (Rahni and Birnbaum, 2019). We used a truncated normal distribution with the mean and 
standard deviation matching the measured values for epidermis cells. A minimum value was set such 

https://doi.org/10.7554/eLife.79743
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that the cell cycle could not be shorter than 13 hr (the lowest value observed for epidermis or cortex 
cells in Rahni and Birnbaum, 2019).

The simulation process was as follows in each cell file, at each timestep:

Division:

• Remaining cell cycle duration is reduced by timestep in all cells.
• Cells with ≤ 0 remaining cell cycle duration divide, such that the positional index of cells with 

higher index than the dividing cells is increased by 1.
• For each dividing cell, the two daughter cells (dividing cell and cell with positional index +1 

relative to it) are assigned new cell cycle durations according to their position.
• Daughter cells are assigned the same digital chromatin state as the mother cell.
• Cells with positional index greater than 30 are removed from the simulation.

Switching:

• For each cell in the cell file, a random number ( ri ) is generated, which is compared to the 
switching probability as followsL

• If the cell is in the OFF/OFF state:
 ○ With probability  p

2
ON   it will switch to the ON/ON state – if  ri < p2

ON  
 ○ With probability  2pON

(
1 − pON

)
  it will switch to the ON/OFF state – if  ri ≥ p2

ON   and 

 
ri <

(
p2

ON + 2pON
(
1 − pON

))
 

 ○ With probability  
(
1 − pON

)2
  it will stay in the OFF/OFF state – if 

 
ri ≥

(
p2

ON + 2pON
(
1 − pON

))
 

• If the cell is in the ON/OFF state:
 ○ With probability  pOFF

(
1 − pON

)
  it will switch to the OFF/OFF state – if  ri <

(
pOFF

(
1 − pON

))
 

 ○ With probability  pON
(
1 − pOFF

)
  it will switch to the ON/ON state – if  ri ≥

(
pOFF

(
1 − pON

))
  

and  ri <
(
pOFF

(
1 − pON

)
+ pON

(
1 − pOFF

))
 

 ○ With probability  
(
pONpOFF +

(
1 − pON

) (
1 − pOFF

))
  it will stay in the ON/OFF state – if 

 ri ≥
(
pOFF

(
1 − pON

)
+ pON

(
1 − pOFF

))
 

• If the cell is in the ON/ON state:
 ○ With probability  p

2
OFF  it will switch to the OFF/OFF state – if  ri < p2

OFF 
 ○ With probability  2pOFF

(
1 − pOFF

)
  it will switch to the ON/OFF state – if  ri ≥ p2

OFF  and 

 
ri <

(
p2

OFF + 2pOFF
(
1 − pOFF

))
 

 ○ With probability  
(
1 − pOFF

)2
  it will stay in the ON/ON state – if 

 
ri ≥

(
p2

OFF + 2pOFF
(
1 − pOFF

))
 

Custom code is available at https://github.com/ReaAntKour/fca_alleles_root_model (copy archived 
at Antoniou- Kourounioti, 2023).

Acknowledgements
We thank all members of the Dean, Rosa and Howard groups for excellent discussions. Special thanks 
to Dr. Cecilia Lövkvist for project coordination. Additionally, we would like to thank all the funders 
listed below.

Additional information

Funding

Funder Grant reference number Author

Biotechnology and 
Biological Sciences 
Research Council

BB/P020380/1 Caroline Dean
Caroline Dean

Vetenskapsrådet 2018-04101 Anis Meschichi
Anis Meschichi

Biotechnology and 
Biological Sciences 
Research Council

BB/P013511/1 Caroline Dean
Caroline Dean

https://doi.org/10.7554/eLife.79743
https://github.com/ReaAntKour/fca_alleles_root_model


 Research article      Chromosomes and Gene Expression | Computational and Systems Biology

Antoniou- Kourounioti, Meschichi, Reeck et al. eLife 2023;12:e79743. DOI: https:// doi. org/ 10. 7554/ eLife. 79743  19 of 22

Funder Grant reference number Author

HORIZON EUROPE Marie 
Sklodowska-Curie Actions

813282 Svenja Reeck
Svenja Reeck

HORIZON EUROPE Marie 
Sklodowska-Curie Actions

MSCA-IF 101032710 Lihua Zhao

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Rea L Antoniou- Kourounioti, Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Writing – original draft, Writing – review and editing; Anis Meschichi, Formal anal-
ysis, Investigation, Methodology, Writing – original draft; Svenja Reeck, Data curation, Formal 
analysis, Investigation, Methodology, Writing – original draft, Writing – review and editing; Scott 
Berry, Conceptualization, Investigation, Writing – review and editing; Govind Menon, Validation, 
Investigation; Yusheng Zhao, Resources, Investigation, Methodology; John Fozard, Formal analysis, 
Software; Terri Holmes, Huamei Wang, Investigation; Lihua Zhao, Methodology; Matthew Hartley, 
Conceptualization, Resources, Software, Formal analysis, Validation, Investigation, Writing – review 
and editing; Caroline Dean, Conceptualization, Resources, Supervision, Funding acquisition, Inves-
tigation, Writing – original draft, Writing – review and editing; Stefanie Rosa, Conceptualization, 
Formal analysis, Supervision, Funding acquisition, Methodology, Writing – original draft, Project 
administration, Writing – review and editing; Martin Howard, Conceptualization, Resources, Formal 
analysis, Supervision, Funding acquisition, Writing – original draft, Project administration, Writing – 
review and editing

Author ORCIDs
Rea L Antoniou- Kourounioti    http://orcid.org/0000-0001-5226-521X
Anis Meschichi    http://orcid.org/0000-0001-8946-6023
Svenja Reeck    https://orcid.org/0000-0002-6362-5310
Scott Berry    https://orcid.org/0000-0002-1838-4976
Govind Menon    https://orcid.org/0000-0002-1028-5463
Yusheng Zhao    https://orcid.org/0000-0002-5893-504X
John Fozard    https://orcid.org/0000-0001-9181-8083
Terri Holmes    https://orcid.org/0000-0002-8480-0755
Lihua Zhao    https://orcid.org/0000-0002-1758-9873
Matthew Hartley    https://orcid.org/0000-0001-6178-2884
Caroline Dean    https://orcid.org/0000-0002-6555-3525
Stefanie Rosa    https://orcid.org/0000-0002-8100-1253
Martin Howard    https://orcid.org/0000-0001-7670-0781

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79743.sa1
Author response https://doi.org/10.7554/eLife.79743.sa2

Additional files
Supplementary files
•  Supplementary file 1. Mathematical model parameters.

•  Supplementary file 2. Primers used in this study.

•  Supplementary file 3. smFISH probe sequences used to detect FLC Venus transcripts. These 
probes were labeled with Quasar570.

•  Supplementary file 4. smFISH probe sequences from Duncan et al., 2016 (A) used to detect 
unspliced PP2A transcripts and (B) used to detect FLC sense spliced. Both probe sets were labeled 
with Quasar670.

•  Supplementary file 5. Raw data from this study.

•  MDAR checklist 

https://doi.org/10.7554/eLife.79743
http://orcid.org/0000-0001-5226-521X
http://orcid.org/0000-0001-8946-6023
https://orcid.org/0000-0002-6362-5310
https://orcid.org/0000-0002-1838-4976
https://orcid.org/0000-0002-1028-5463
https://orcid.org/0000-0002-5893-504X
https://orcid.org/0000-0001-9181-8083
https://orcid.org/0000-0002-8480-0755
https://orcid.org/0000-0002-1758-9873
https://orcid.org/0000-0001-6178-2884
https://orcid.org/0000-0002-6555-3525
https://orcid.org/0000-0002-8100-1253
https://orcid.org/0000-0001-7670-0781
https://doi.org/10.7554/eLife.79743.sa1
https://doi.org/10.7554/eLife.79743.sa2


 Research article      Chromosomes and Gene Expression | Computational and Systems Biology

Antoniou- Kourounioti, Meschichi, Reeck et al. eLife 2023;12:e79743. DOI: https:// doi. org/ 10. 7554/ eLife. 79743  20 of 22

Data availability
All microscopy data has been deposited to the BioImage Archive with Accession code S- BIAD425 
(https://www.ebi.ac.uk/biostudies/studies/S-BIAD425). Derived quantification data from images, as 
well as qPCR data, are provided as Supplementary file 5. All code is available through GitHub repos-
itories, as described in the ‘Materials and methods’.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Antoniou- Kourounioti 
R, Meschischi A, 
Reeck S, Berry S, 
Menon G, Zhao Y, 
Fozard JA, Holmes 
T, Wang H, Hartley 
M, Dean C, Rosa S, 
Howard M

2022 Integrating analog and 
digital modes of gene 
expression at Arabidopsis 
FLC

https://www. ebi. 
ac. uk/ biostudies/ 
BioImages/ studies/ 
S- BIAD425? query= 
S- BIAD425

BioImage Archive, S- 
BIAD425

References
Ahmad K, Henikoff S, Ramachandran S. 2022. Managing the steady state chromatin landscape by nucleosome 

dynamics. Annual Review of Biochemistry 91:183–195. DOI: https://doi.org/10.1146/annurev-biochem-032620- 
104508, PMID: 35303789

Angel A, Song J, Dean C, Howard M. 2011. A Polycomb- based switch underlying quantitative epigenetic 
memory. Nature 476:105–108. DOI: https://doi.org/10.1038/nature10241, PMID: 21785438

Antoniou- Kourounioti R. 2023. Fca_Alleles_Root_Model. 
swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e. Software Heritage. https://archive. 
softwareheritage.org/swh:1:dir:87018302934fc2d1582439551fd5a12169e126c3;origin=https://github.com/ 
ReaAntKour/fca_alleles_root_model;visit=swh:1:snp:784fbaba0071b5f5ad21aea41cec6fcd24b5d84f;anchor= 
swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e

Beare R, Lehmann G. 2006. The watershed transform in ITK - discussion and new developments. The Insight 
Journal 202:1–24. DOI: https://doi.org/10.54294/lf8u75

Beltran M, Yates CM, Skalska L, Dawson M, Reis FP, Viiri K, Fisher CL, Sibley CR, Foster BM, Bartke T, Ule J, 
Jenner RG. 2016. The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Research 
26:896–907. DOI: https://doi.org/10.1101/gr.197632.115, PMID: 27197219

Berry S, Dean C. 2015. Environmental perception and epigenetic memory: mechanistic insight through FLC. The 
Plant Journal 83:133–148. DOI: https://doi.org/10.1111/tpj.12869, PMID: 25929799

Berry S, Hartley M, Olsson TSG, Dean C, Howard M. 2015. Local chromatin environment of a Polycomb target 
gene instructs its own epigenetic inheritance. eLife 4:e07205. DOI: https://doi.org/10.7554/eLife.07205, PMID: 
25955967

Berry S, Dean C, Howard M. 2017. Slow Chromatin Dynamics allow Polycomb target genes to filter fluctuations 
in transcription factor activity. Cell Systems 4:445–457. DOI: https://doi.org/10.1016/j.cels.2017.02.013, PMID: 
28342717

Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y, Uno N, Oshimura M, Elowitz MB. 2016. Dynamics of epigenetic 
regulation at the single- cell level. Science 351:720–724. DOI: https://doi.org/10.1126/science.aab2956, PMID: 
26912859

Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR. 2014. Kinetic competition during the 
transcription cycle results in stochastic RNA processing. eLife 3:e03939. DOI: https://doi.org/10.7554/eLife. 
03939, PMID: 25271374

Coustham V, Li P, Strange A, Lister C, Song J, Dean C. 2012. Quantitative modulation of polycomb silencing 
underlies natural variation in vernalization. Science 337:584–587. DOI: https://doi.org/10.1126/science. 
1221881, PMID: 22798408

Duncan S, Olsson TSG, Hartley M, Dean C, Rosa S. 2016. A method for detecting single mRNA molecules in 
Arabidopsis thaliana Plant Methods 12:13. DOI: https://doi.org/10.1186/s13007-016-0114-x, PMID: 28035231

Duncan S, Olsson TSG, Hartley M, Dean C, Rosa S. 2017. Single molecule RNA FISH in Arabidopsis root cells. 
BIO- PROTOCOL 7:e2240. DOI: https://doi.org/10.21769/BioProtoc.2240

FozardJ. 2022. Segcorrect. swh:1:rev:e8d9b79982a0beae2a765e949679281cc91ffe3a. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:c469a18d85ac6c5a25a080f0d3705213b8f58ea8;origin=https:// 
github.com/jfozard/segcorrect;visit=swh:1:snp:ae45790bb006eab36f0c8d8d004c5b9c20e64b11;anchor=swh: 
1:rev:e8d9b79982a0beae2a765e949679281cc91ffe3a

Goodnight D, Rine J. 2020. S- phase- independent silencing establishment in Saccharomyces cerevisiae eLife 
9:e58910. DOI: https://doi.org/10.7554/eLife.58910, PMID: 32687055

Gordillo SVG, Escobar- Guzman R, Rodriguez- Leal D, Vielle- Calzada JP, Ronceret A. 2020. Whole- mount 
immunolocalization procedure for plant female meiocytes. Methods in Molecular Biology 2061:13–24. DOI: 
https://doi.org/10.1007/978-1-4939-9818-0_2, PMID: 31583649

https://doi.org/10.7554/eLife.79743
https://www.ebi.ac.uk/biostudies/studies/S-BIAD425
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD425?query=S-BIAD425
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD425?query=S-BIAD425
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD425?query=S-BIAD425
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD425?query=S-BIAD425
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD425?query=S-BIAD425
https://doi.org/10.1146/annurev-biochem-032620-104508
https://doi.org/10.1146/annurev-biochem-032620-104508
http://www.ncbi.nlm.nih.gov/pubmed/35303789
https://doi.org/10.1038/nature10241
http://www.ncbi.nlm.nih.gov/pubmed/21785438
https://archive.softwareheritage.org/swh:1:dir:87018302934fc2d1582439551fd5a12169e126c3;origin=https://github.com/ReaAntKour/fca_alleles_root_model;visit=swh:1:snp:784fbaba0071b5f5ad21aea41cec6fcd24b5d84f;anchor=swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e
https://archive.softwareheritage.org/swh:1:dir:87018302934fc2d1582439551fd5a12169e126c3;origin=https://github.com/ReaAntKour/fca_alleles_root_model;visit=swh:1:snp:784fbaba0071b5f5ad21aea41cec6fcd24b5d84f;anchor=swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e
https://archive.softwareheritage.org/swh:1:dir:87018302934fc2d1582439551fd5a12169e126c3;origin=https://github.com/ReaAntKour/fca_alleles_root_model;visit=swh:1:snp:784fbaba0071b5f5ad21aea41cec6fcd24b5d84f;anchor=swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e
https://archive.softwareheritage.org/swh:1:dir:87018302934fc2d1582439551fd5a12169e126c3;origin=https://github.com/ReaAntKour/fca_alleles_root_model;visit=swh:1:snp:784fbaba0071b5f5ad21aea41cec6fcd24b5d84f;anchor=swh:1:rev:d9915b5637c17bf0f0234b5353fcd48d7382062e
https://doi.org/10.54294/lf8u75
https://doi.org/10.1101/gr.197632.115
http://www.ncbi.nlm.nih.gov/pubmed/27197219
https://doi.org/10.1111/tpj.12869
http://www.ncbi.nlm.nih.gov/pubmed/25929799
https://doi.org/10.7554/eLife.07205
http://www.ncbi.nlm.nih.gov/pubmed/25955967
https://doi.org/10.1016/j.cels.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28342717
https://doi.org/10.1126/science.aab2956
http://www.ncbi.nlm.nih.gov/pubmed/26912859
https://doi.org/10.7554/eLife.03939
https://doi.org/10.7554/eLife.03939
http://www.ncbi.nlm.nih.gov/pubmed/25271374
https://doi.org/10.1126/science.1221881
https://doi.org/10.1126/science.1221881
http://www.ncbi.nlm.nih.gov/pubmed/22798408
https://doi.org/10.1186/s13007-016-0114-x
http://www.ncbi.nlm.nih.gov/pubmed/28035231
https://doi.org/10.21769/BioProtoc.2240
https://archive.softwareheritage.org/swh:1:dir:c469a18d85ac6c5a25a080f0d3705213b8f58ea8;origin=https://github.com/jfozard/segcorrect;visit=swh:1:snp:ae45790bb006eab36f0c8d8d004c5b9c20e64b11;anchor=swh:1:rev:e8d9b79982a0beae2a765e949679281cc91ffe3a
https://archive.softwareheritage.org/swh:1:dir:c469a18d85ac6c5a25a080f0d3705213b8f58ea8;origin=https://github.com/jfozard/segcorrect;visit=swh:1:snp:ae45790bb006eab36f0c8d8d004c5b9c20e64b11;anchor=swh:1:rev:e8d9b79982a0beae2a765e949679281cc91ffe3a
https://archive.softwareheritage.org/swh:1:dir:c469a18d85ac6c5a25a080f0d3705213b8f58ea8;origin=https://github.com/jfozard/segcorrect;visit=swh:1:snp:ae45790bb006eab36f0c8d8d004c5b9c20e64b11;anchor=swh:1:rev:e8d9b79982a0beae2a765e949679281cc91ffe3a
https://doi.org/10.7554/eLife.58910
http://www.ncbi.nlm.nih.gov/pubmed/32687055
https://doi.org/10.1007/978-1-4939-9818-0_2
http://www.ncbi.nlm.nih.gov/pubmed/31583649


 Research article      Chromosomes and Gene Expression | Computational and Systems Biology

Antoniou- Kourounioti, Meschichi, Reeck et al. eLife 2023;12:e79743. DOI: https:// doi. org/ 10. 7554/ eLife. 79743  21 of 22

HartleyM, Antoniou- Kourounioti R. 2022a. Fishtools. swh:1:rev:5a0c5415cf074ff5a725e25b87abe9bc5b1e2e71. 
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:9b50eb9240900a01b72dc5112689384b 
fc1c7ba4;origin=https://github.com/JIC-Image-Analysis/fishtools;visit=swh:1:snp:ec231aa406bc68115285c02f 
9ff111934de188ef;anchor=swh:1:rev:5a0c5415cf074ff5a725e25b87abe9bc5b1e2e71

HartleyM, Antoniou- Kourounioti R. 2022b. Root_Measurement. 
swh:1:rev:6d7fda6f57199d17dee98b70ff16e32a386864f1. Software Heritage. https://archive.softwareheritage. 
org/swh:1:dir:5c8099a5d81acace2d36d92f1b5287209365bebc;origin=https://github.com/JIC-Image-Analysis/ 
root_measurement;visit=swh:1:snp:b0649defb67a6f680ef36d0393e78b8d3357f09a;anchor=swh:1:rev:6d7fda6f 
57199d17dee98b70ff16e32a386864f1

Hepworth J, Antoniou- Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D, Collier Harris BR, 
Irwin JA, Howard M, Säll T, Holm S, Dean C. 2020. Natural variation in autumn expression is the major adaptive 
determinant distinguishing Arabidopsis FLC haplotypes. eLife 9:e57671. DOI: https://doi.org/10.7554/eLife. 
57671, PMID: 32902380

Holoch D, Wassef M, Lövkvist C, Zielinski D, Aflaki S, Lombard B, Héry T, Loew D, Howard M, Margueron R. 
2021. A cis- acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nature 
Genetics 53:1686–1697. DOI: https://doi.org/10.1038/s41588-021-00964-2, PMID: 34782763

Ietswaart R, Rosa S, Wu Z, Dean C, Howard M. 2017. Cell- size- dependent transcription of FLC and its antisense 
long non- coding RNA COOLAIR explain cell- to- cell expression variation. Cell Systems 4:622–635. DOI: https:// 
doi.org/10.1016/j.cels.2017.05.010, PMID: 28624615

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. 2000. Molecular analysis of FRIGIDA, a major 
determinant of natural variation in Arabidopsis flowering time. Science 290:344–347. DOI: https://doi.org/10. 
1126/science.290.5490.344, PMID: 11030654

Koornneef M, Hanhart CJ, van der Veen JH. 1991. A genetic and physiological analysis of late flowering mutants 
in Arabidopsis thaliana. Molecular & General Genetics 229:57–66. DOI: https://doi.org/10.1007/BF00264213, 
PMID: 1896021

Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. 2013. Positive feedback between PU.1 and the 
cell cycle controls myeloid differentiation. Science 341:670–673. DOI: https://doi.org/10.1126/science. 
1240831, PMID: 23868921

Kurihara D, Mizuta Y, Sato Y, Higashiyama T. 2015. ClearSee: a rapid optical clearing reagent for whole- plant 
fluorescence imaging. Development 142:4168–4179. DOI: https://doi.org/10.1242/dev.127613, PMID: 
26493404

Lee I, Amasino RM. 1995. Effect of vernalization, photoperiod and light quality on the flowering phenotype of 
Arabidopsis plants containing the FRIGIDA gene. Plant Physiology 108:157–162. DOI: https://doi.org/10.1104/ 
pp.108.1.157, PMID: 12228459

Li Z, Jiang D, He Y. 2018. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C 
mRNA production. Nature Plants 4:836–846. DOI: https://doi.org/10.1038/s41477-018-0250-6, PMID: 
30224662

Liu J, He Y, Amasino R, Chen X. 2004. siRNAs targeting an intronic transposon in the regulation of natural 
flowering behavior in Arabidopsis. Genes & Development 18:2873–2878. DOI: https://doi.org/10.1101/gad. 
1217304, PMID: 15545622

Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M. 2021. Hybrid protein assembly- histone 
modification mechanism for PRC2- based epigenetic switching and memory. eLife 10:e66454. DOI: https://doi. 
org/10.7554/eLife.66454, PMID: 34473050

Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, 
Dean C. 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA- 
binding domains. Cell 89:737–745. DOI: https://doi.org/10.1016/s0092-8674(00)80256-1, PMID: 9182761

Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C. 2002. Functional significance of the alternative 
transcript processing of the Arabidopsis floral promoter FCA. The Plant Cell 14:877–888. DOI: https://doi.org/ 
10.1105/tpc.010456, PMID: 11971142

Munsky B, Neuert G. 2015. From analog to digital models of gene regulation. Physical Biology 12:045004. DOI: 
https://doi.org/10.1088/1478-3975/12/4/045004, PMID: 26086470

Page T, Macknight R, Yang CH, Dean C. 1999. Genetic interactions of the Arabidopsis flowering time gene FCA, 
with genes regulating floral initiation. The Plant Journal 17:231–239. DOI: https://doi.org/10.1046/j.1365-313x. 
1999.00364.x, PMID: 10097382

Python Software Foundation. 2023. The Python Language Reference. 3. Python. https://docs.python.org/3/ 
reference/

Qüesta JI, Antoniou- Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C. 2020. Noncoding 
SNPs influence a distinct phase of Polycomb silencing to destabilize long- term epigenetic memory at 
Arabidopsis FLC. Genes & Development 34:446–461.  DOI: https://doi.org/10.1101/gad.333245.119, PMID: 
32001513

Rahni R, Birnbaum KD. 2019. Week- long imaging of cell divisions in the Arabidopsis root meristem. Plant 
Methods 15:30.  DOI: https://doi.org/10.1186/s13007-019-0417-9, PMID: 30988691

Rosa S, Duncan S, Dean C. 2016. Mutually exclusive sense- antisense transcription at FLC facilitates 
environmentally induced gene repression. Nature Communications 7:13031.  DOI: https://doi.org/10.1038/ 
ncomms13031, PMID: 27713408

Saxton DS, Rine J. 2022. Distinct silencer states generate epigenetic states of heterochromatin. bioRxiv. DOI: 
https://doi.org/10.1101/2022.02.01.478725

https://doi.org/10.7554/eLife.79743
https://archive.softwareheritage.org/swh:1:dir:9b50eb9240900a01b72dc5112689384bfc1c7ba4;origin=https://github.com/JIC-Image-Analysis/fishtools;visit=swh:1:snp:ec231aa406bc68115285c02f9ff111934de188ef;anchor=swh:1:rev:5a0c5415cf074ff5a725e25b87abe9bc5b1e2e71
https://archive.softwareheritage.org/swh:1:dir:9b50eb9240900a01b72dc5112689384bfc1c7ba4;origin=https://github.com/JIC-Image-Analysis/fishtools;visit=swh:1:snp:ec231aa406bc68115285c02f9ff111934de188ef;anchor=swh:1:rev:5a0c5415cf074ff5a725e25b87abe9bc5b1e2e71
https://archive.softwareheritage.org/swh:1:dir:9b50eb9240900a01b72dc5112689384bfc1c7ba4;origin=https://github.com/JIC-Image-Analysis/fishtools;visit=swh:1:snp:ec231aa406bc68115285c02f9ff111934de188ef;anchor=swh:1:rev:5a0c5415cf074ff5a725e25b87abe9bc5b1e2e71
https://archive.softwareheritage.org/swh:1:dir:5c8099a5d81acace2d36d92f1b5287209365bebc;origin=https://github.com/JIC-Image-Analysis/root_measurement;visit=swh:1:snp:b0649defb67a6f680ef36d0393e78b8d3357f09a;anchor=swh:1:rev:6d7fda6f57199d17dee98b70ff16e32a386864f1
https://archive.softwareheritage.org/swh:1:dir:5c8099a5d81acace2d36d92f1b5287209365bebc;origin=https://github.com/JIC-Image-Analysis/root_measurement;visit=swh:1:snp:b0649defb67a6f680ef36d0393e78b8d3357f09a;anchor=swh:1:rev:6d7fda6f57199d17dee98b70ff16e32a386864f1
https://archive.softwareheritage.org/swh:1:dir:5c8099a5d81acace2d36d92f1b5287209365bebc;origin=https://github.com/JIC-Image-Analysis/root_measurement;visit=swh:1:snp:b0649defb67a6f680ef36d0393e78b8d3357f09a;anchor=swh:1:rev:6d7fda6f57199d17dee98b70ff16e32a386864f1
https://archive.softwareheritage.org/swh:1:dir:5c8099a5d81acace2d36d92f1b5287209365bebc;origin=https://github.com/JIC-Image-Analysis/root_measurement;visit=swh:1:snp:b0649defb67a6f680ef36d0393e78b8d3357f09a;anchor=swh:1:rev:6d7fda6f57199d17dee98b70ff16e32a386864f1
https://doi.org/10.7554/eLife.57671
https://doi.org/10.7554/eLife.57671
http://www.ncbi.nlm.nih.gov/pubmed/32902380
https://doi.org/10.1038/s41588-021-00964-2
http://www.ncbi.nlm.nih.gov/pubmed/34782763
https://doi.org/10.1016/j.cels.2017.05.010
https://doi.org/10.1016/j.cels.2017.05.010
http://www.ncbi.nlm.nih.gov/pubmed/28624615
https://doi.org/10.1126/science.290.5490.344
https://doi.org/10.1126/science.290.5490.344
http://www.ncbi.nlm.nih.gov/pubmed/11030654
https://doi.org/10.1007/BF00264213
http://www.ncbi.nlm.nih.gov/pubmed/1896021
https://doi.org/10.1126/science.1240831
https://doi.org/10.1126/science.1240831
http://www.ncbi.nlm.nih.gov/pubmed/23868921
https://doi.org/10.1242/dev.127613
http://www.ncbi.nlm.nih.gov/pubmed/26493404
https://doi.org/10.1104/pp.108.1.157
https://doi.org/10.1104/pp.108.1.157
http://www.ncbi.nlm.nih.gov/pubmed/12228459
https://doi.org/10.1038/s41477-018-0250-6
http://www.ncbi.nlm.nih.gov/pubmed/30224662
https://doi.org/10.1101/gad.1217304
https://doi.org/10.1101/gad.1217304
http://www.ncbi.nlm.nih.gov/pubmed/15545622
https://doi.org/10.7554/eLife.66454
https://doi.org/10.7554/eLife.66454
http://www.ncbi.nlm.nih.gov/pubmed/34473050
https://doi.org/10.1016/s0092-8674(00)80256-1
http://www.ncbi.nlm.nih.gov/pubmed/9182761
https://doi.org/10.1105/tpc.010456
https://doi.org/10.1105/tpc.010456
http://www.ncbi.nlm.nih.gov/pubmed/11971142
https://doi.org/10.1088/1478-3975/12/4/045004
http://www.ncbi.nlm.nih.gov/pubmed/26086470
https://doi.org/10.1046/j.1365-313x.1999.00364.x
https://doi.org/10.1046/j.1365-313x.1999.00364.x
http://www.ncbi.nlm.nih.gov/pubmed/10097382
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
https://doi.org/10.1101/gad.333245.119
http://www.ncbi.nlm.nih.gov/pubmed/32001513
https://doi.org/10.1186/s13007-019-0417-9
http://www.ncbi.nlm.nih.gov/pubmed/30988691
https://doi.org/10.1038/ncomms13031
https://doi.org/10.1038/ncomms13031
http://www.ncbi.nlm.nih.gov/pubmed/27713408
https://doi.org/10.1101/2022.02.01.478725


 Research article      Chromosomes and Gene Expression | Computational and Systems Biology

Antoniou- Kourounioti, Meschichi, Reeck et al. eLife 2023;12:e79743. DOI: https:// doi. org/ 10. 7554/ eLife. 79743  22 of 22

Schon M, Baxter C, Xu C, Enugutti B, Nodine MD, Dean C. 2021. Antagonistic activities of cotranscriptional 
regulators within an early developmental window set FLC expression level. PNAS 118:e2102753118.  DOI: 
https://doi.org/10.1073/pnas.2102753118, PMID: 33879620

Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan ZC, Liu J, Kohalmi SE, Li C, Cui Y. 2019. Genome- wide 
occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. Plant 
Direct 3:e00100.  DOI: https://doi.org/10.1002/pld3.100, PMID: 31245749

Stewart- Ornstein J, Nelson C, DeRisi J, Weissman JS, El- Samad H. 2013. Msn2 coordinates a stoichiometric gene 
expression program. Current Biology 23:2336–2345.  DOI: https://doi.org/10.1016/j.cub.2013.09.043, PMID: 
24210615

Wu Z, Fang X, Zhu D, Dean C. 2020. Autonomous pathway: FLOWERING LOCUS C repression through an 
antisense- mediated chromatin- silencing mechanism. Plant Physiology 182:27–37.  DOI: https://doi.org/10. 
1104/pp.19.01009, PMID: 31740502

Yang H, Howard M, Dean C. 2014. Antagonistic roles for H3K36me3 and H3K27me3 in the cold- induced 
epigenetic switch at Arabidopsis FLC. Current Biology 24:1793–1797.  DOI: https://doi.org/10.1016/j.cub. 
2014.06.047, PMID: 25065750

Zhao Y, Antoniou- Kourounioti RL, Calder G, Dean C, Howard M. 2020. Temperature- dependent growth contributes 
to long- term cold sensing. Nature 583:825–829.  DOI: https://doi.org/10.1038/s41586-020-2485-4, PMID: 
32669706

https://doi.org/10.7554/eLife.79743
https://doi.org/10.1073/pnas.2102753118
http://www.ncbi.nlm.nih.gov/pubmed/33879620
https://doi.org/10.1002/pld3.100
http://www.ncbi.nlm.nih.gov/pubmed/31245749
https://doi.org/10.1016/j.cub.2013.09.043
http://www.ncbi.nlm.nih.gov/pubmed/24210615
https://doi.org/10.1104/pp.19.01009
https://doi.org/10.1104/pp.19.01009
http://www.ncbi.nlm.nih.gov/pubmed/31740502
https://doi.org/10.1016/j.cub.2014.06.047
https://doi.org/10.1016/j.cub.2014.06.047
http://www.ncbi.nlm.nih.gov/pubmed/25065750
https://doi.org/10.1038/s41586-020-2485-4
http://www.ncbi.nlm.nih.gov/pubmed/32669706

	Integrating analog and digital modes of gene expression at Arabidopsis FLC
	Editor's evaluation
	Introduction
	Results
	Analysis of fca alleles reveals both analog and digital regulation at FLC
	FLC RNA and protein are degraded quickly relative to the cell cycle duration
	Switching of FLC loci to an OFF state over time in fca-3
	Mathematical model incorporating digital switching can recapitulate the FLC distribution over time in fca-3

	Discussion
	Materials and methods
	Plant material
	fca alleles
	Generation of FLC-Venus transgenic lines

	Plant growth
	Gene expression analysis
	Actinomycin D treatment
	Cycloheximide (CHX) treatment
	smFISH
	smFISH probe synthesis
	Image acquisition
	Image analysis
	FISH analysis
	FLC-Venus fluorescence intensity in roots

	Mathematical model

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


